US 20250265417A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2025/0265417 A1

Shakeri et al.

43) Pub. Date: Aug. 21, 2025

(54)

(71)
(72)

@
(22)

(63)

802

804

806

808

812

(o0]
o]
(]

|

SOFT KNOWLEDGE PROMPTS FOR
LANGUAGE MODELS

Applicant: Google LL.C, Mountain View, CA (US)

Inventors: Siamak Shakeri, New York City, NY
(US); Cicero Nogueira dos Santos,
Glen Ridge, NJ (US); Daniel Matthew
Cer, Santa Clara, CA (US); Zhe Dong,
Zurich (CH); Jianmo Ni, Santa Clara,
CA (US); Yun-Hsuan Sung, San
Francisco, CA (US); John Nham,
Fremont, CA (US)

Appl. No.: 19/198,499
Filed: May 5, 2025

Related U.S. Application Data

Continuation of application No. 18/166,806, filed on
Feb. 9, 2023, now Pat. No. 12,321,706.

Publication Classification

(51) Int. CL

GOGF 40/295 (2020.01)
(52) US.CL

() SR GOGF 40/295 (2020.01)
(57) ABSTRACT

The technology employs soft knowledge prompts (KPs) to
inject relevant world knowledge into language models. This
includes training KPs via self-supervised learning on data
from one or more knowledge bases. KPs are task indepen-
dent and can function as an external memory of the language
models. KPs may be entity-centric, meaning that each
prompt primarily encodes information about one entity from
a given knowledge base. A method includes identifying a KP
in response to a received input text, concatenating that KP
to a sequence of word embeddings of the input text, applying
the concatenated information to a trained language model,
predicting an object entity name, computing a cross-entropy
loss, and updating the identified KP based on the computed
cross-entropy loss.

a received input text

Identifying, by one or more processors of a computing system, a soft knowledge prompt in response to

word embeddings of the input text

Concatenating, by the one or more processors, the identified soft knowledge prompt to a sequence of

X

Applying, by the one or more processors, the concatenated soft knowledge prompt and the sequence
of word embeddings to a trained language model

A

Predicting, by the one or more processors, an object entity name

N

Computing, by the one or more processors, a cross-entropy {0ss

b

SN S A

Updating the identified soft knowledge prompt based on the computed cross-entropy loss




US 2025/0265417 Al

Aug. 21, 2025 Sheet 1 of 18

uosieAA auep Al

-fomsuy

JAew Jayied 1919d pIp OUM

o0
~
)

:uonsanyd

ddy samsuy pue uogisenp

oLl

901

Patent Application Publication

8Ll

¢\ LA

A E

0} Aowsiy

Z01 (s)i0sso001d
001 weshAs




US 2025/0265417 Al

Aug. 21, 2025 Sheet 2 of 18

Patent Application Publication

(Lvy Joud) Z 'Ol

Tk .. s ! ! ! ! .. .. ! ,.. t i .. s
| sindino sinduy
o T T T T T mt$ttt!!!!!!!t!!twt!& ttttttttt p
! uippaquiy uippaquiy
! | inding - 0ee indu; T eke
“ Bugpoouy Buipoous
| m leuonisod & o [euonIsod
i ——
| 424 ¥ie
_ | Y v ¥ e Ty
! uojueNY pesH uonuany
8¢ ~ L™ :
| | BN peXSEI O~ pespnini
u y !
| | UWLION B PPY ULION @ PPV |«
i
| i =
i uonueny 8Ld LY PIEMIO D34
| 08¢ ~"177  peon-ninw 7
u | ¥ WION B PPY [«
_ 9z2 —» WION % PPY
| yee | i
m 4 ;
AVT Xewyos piemio posd M 0EC
_ ! % ¥ 80T
pTe N deeun WION B PPY " oz -
|
{




Patent Application Publication  Aug. 21, 2025 Sheet 3 of 18 US 2025/0265417 A1

q—
O
[ap]
()
(@)
©
RO
;O.
o &
3=
@)
P
™
O
T
N
(e}
o)
)
©
@)
= "
P @ g
g~———~> (®)) e Y
] © I
)
®)]
o
©
—d
(e}
(e

o)



US 2025/0265417 Al

Aug. 21, 2025 Sheet 4 of 18

O
O
<

Patent Application Publication

Jamsuy
uosiep auer AN <LiN> w7 > ZLY

v~ ) H

(uazolid)
[opoN ebenbue]

T

o0y

sjdwiodd
abpamouy| Jos

T T
— TS~ <LN> 0 paliew 1odied 181ad

Al
VP 'old °no v/ 2oy



US 2025/0265417 Al

Aug. 21, 2025 Sheet 5 of 18

Patent Application Publication
=
&
<t

UOSIBAA Suer Al <L N>

Jomsuy

i

Jepooa(

!

f

lapooug

g2y — |
9y —*
oy —

AT TN

o0v
syduiold
abpamouy] 10
.‘1 ™~ -~
T Tl
N~— =
ay 'old

<L N> 0 paiiew died i81ed

Aenp

. 2oy



US 2025/0265417 Al

Aug. 21,2025 Sheet 6 of 18

Patent Application Publication

T

Ov

sjdwold
abpajmouy] Jos

e
S

<
<
<

lamsuy

uosiep) suep AeiN <LIN>

i

lopooe(

Jepoouy

Or 'Old

!

<LN> 0] paLueW 1yied Joyed

Aenp



US 2025/0265417 Al

Aug. 21, 2025 Sheet 7 of 18

Patent Application Publication

et 4 S50} 8ARSEAUOD /\/ vLy

Buijood
pue uonosioid

N Q01

........................... Ll sidwoud
W abpsjmouy) yos [V~ _

9Ly ——
/!‘li\\\

o
©
<

JpOoUT VAR

av old

V\/\ c9v

uosiep) asuer Aey
0} pollew si iaxied 19}9d

Sd) JuBAdjaI IABLIIRY



US 2025/0265417 Al

Aug. 21,2025 Sheet 8 of 18

Patent Application Publication
-
<t

TN
(8}

sydwolg
abpajmouy oS

TN

Jomsuy

UOSIBAA Suer Al <L N>

19p0o2a( /" o6y

88y

Jopooug /\/ vey

H

28y~

Joyur] Anug

- £0} paLlew
::::::::::: laxied 19}9d St OUM

3¢ "Old



Jsmsuy

uosIEM ocmm AeN <UN> L~ yzg

18pooag

US 2025/0265417 Al

02s

g1~ *

1N 015

T

LG

Aug. 21,2025 Sheet 9 of 18

syduwiold
abpajmouy] 10s

T
7

£0} palew
iajied 1018d S OUM w208

Patent Application Publication

-
-
w0

G 'Oid



Patent Application Publication  Aug. 21, 2025 Sheet 10 of 18  US 2025/0265417 Al

FIG. 6A
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FIG. 6B
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SOFT KNOWLEDGE PROMPTS FOR
LANGUAGE MODELS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. applica-
tion Ser. No. 18/166,806, filed Feb. 9, 2023, the entire
disclosure of which is incorporated by reference herein.

BACKGROUND

[0002] Neural language models (LLMs) can be trained to
handle certain tasks very effectively, such as providing a
relevant answer to a specific question. Large language
models (LLMs) can store a significant amount of factual
information from pre-training data. The knowledge obtained
during pre-training can be utilized in downstream natural
language understanding (NLU) tasks such as questions and
answers. The larger the LM, the more facts it can memorize
at the training time, and the more relevant the results at the
inference time.

[0003] Despite their success, these models also present
some important drawbacks. For example, the parametric
memory of such models has a fixed size and cannot grow (or
shrink) over time without fully retraining the model. There
may be no control in terms of which part of the memory
stores data about what. Facts that do not co-occur frequently
in the training data would not be well represented in the
model. Very large models may be required to memorize
enough data in order to perform satisfactorily on knowledge
intensive tasks such as generative question answering. In
addition, the memorized knowledge can become obsolete
over time, which would require re-training the model for
“refreshness” to avoid obsolescence.

BRIEF SUMMARY

[0004] The technology relates to the use of soft knowledge
prompts to inject relevant world knowledge into LMs.
Aspects of the technology provide a method and arrange-
ment to train soft prompts via self-supervised learning on
data from one or more knowledge bases. The resulting soft
knowledge prompts (hereinafter, KPs) are task independent
and can effectively function as an external memory of the
LMs. Qualitative and quantitative experiments demonstrate
that KPs can effectively model the structure of the training
data, and that they can be used to improve the performance
of LMs in different knowledge intensive tasks. Such tasks
may include generative question/answer tasks, chat appli-
cations, suggesting text to complete a sentence or thought,
etc.

[0005] According to one aspect, a computer-implemented
method is provided that comprises: identifying, by one or
more processors of a computing system, a soft knowledge
prompt in response to a received input text; concatenating,
by the one or more processors, the identified soft knowledge
prompt to a sequence of word embeddings of the input text;
applying, by the one or more processors, the concatenated
soft knowledge prompt and the sequence of word embed-
dings to a trained language model; predicting, by the one or
more processors, an object entity name; computing, by the
one or more processors, a cross-entropy loss; and updating
the identified soft knowledge prompt based on the computed
cross-entropy loss.

Aug. 21, 2025

[0006] In one example, the method may further comprise:
selecting the updated soft knowledge prompt in response to
a received query; applying the selected soft knowledge
prompt to the trained model; and transmitting a response to
the received query. Alternatively or additionally, the trained
language model is frozen prior to applying the concatenated
soft knowledge prompt. Alternatively or additionally, the
soft knowledge prompt may be stored in external memory
separate from the trained language model. Here, the external
memory may be of variable size and a memory size of the
trained language model is fixed.

[0007] Applying the concatenated soft knowledge prompt
and the sequence of word embeddings to the trained lan-
guage model may be done as an input to an encoder of the
trained language model. Or applying the concatenated soft
knowledge prompt and the sequence of word embeddings to
the trained language model may be done as an input to a
decoder of the trained language model.

[0008] Alternatively or additionally to any of the above,
updating the identified soft knowledge prompt may be done
by back-propagating the computed cross-entropy loss
through the trained language model. Alternatively or addi-
tionally to any of the above, the cross-entropy loss may be
computed by applying max pooling and projection to vectors
output by an encoder of the trained language model.
[0009] According to another aspect, a computer-imple-
mented method is provided that comprises: identifying, by
one or more processors of a computing system, a soft
knowledge prompt in response to a received query, the soft
knowledge prompt being stored in memory external to a
trained language model; adding, by the one or more proces-
sors, the identified soft knowledge prompt to information
associated with word embeddings of the received query to
form a set of combined information; applying, by the one or
more processors, the set of combined information to the
trained language model; predicting, by the one or more
processors, an object entity name; and transmitting a
response to the received query according to the predicted
entity name.

[0010] In one example, the soft knowledge prompt is
identified by an entity linker, and the method includes
applying the identification by the entity linker to the memory
to retrieve the soft knowledge prompt. Applying the set of
combined information to the trained language model may be
done as an input to an encoder of the trained language
model. Or applying the set of combined information to the
trained language model may be done as an input to a decoder
of the trained language model.

[0011] According to a further aspect, a computing system
is provided comprising memory configured to store a set of
soft knowledge prompts, and one or more processors opera-
tively coupled to the memory. The one or more processors
are configured to: identify a soft knowledge prompt in
response to a received input text; concatenate the identified
soft knowledge prompt to a sequence of word embeddings
of the input text; apply the concatenated soft knowledge
prompt and the sequence of word embeddings to a trained
language model; predict an object entity name; compute a
cross-entropy loss; and update, in the memory, the identified
soft knowledge prompt based on the computed cross-en-
tropy loss. Application of the concatenated soft knowledge
prompt and the sequence of word embeddings to the trained
language model may be done as an input to an encoder of the
trained language model. Or application of the concatenated
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soft knowledge prompt and the sequence of word embed-
dings to the trained language model may be done as an input
to a decoder of the trained language model. The update of
the identified soft knowledge prompt may be done by
back-propagating the computed cross-entropy loss through
the trained language model. And the cross-entropy loss may
be computed by applying max pooling and projection to
vectors output by an encoder of the trained language model.
[0012] According to yet another aspect, a computing sys-
tem is provided comprising memory configured to store a set
of soft knowledge prompts and one or more processors
operatively coupled to the memory. The one or more pro-
cessors are configured to: identify a soft knowledge prompt
in response to a received query, the soft knowledge prompt
being stored in the memory that is external to a trained
language model; add the identified soft knowledge prompt to
information associated with word embeddings of the
received query to form a set of combined information; apply
the set of combined information to the trained language
model; predict an object entity name; and transmit a
response to the received query according to the predicted
entity name. Application of the set of combined information
to the trained language model may be done as an input to an
encoder of the trained language model. Or application of the
set of combined information to the trained language model
may be done as an input to a decoder of the trained language
model.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1 illustrates an example system for use in
accordance with aspects of the technology.

[0014] FIG. 2 illustrates a Transformer-type architecture
for use in accordance with aspects of the technology.

[0015] FIG. 3 illustrates an external memory approach for
language models in accordance with aspects of the technol-
ogy.

[0016] FIGS. 4A-C illustrate examples of knowledge
prompt training in accordance with aspects of the technol-
ogy.

[0017] FIGS. 4D-E illustrate examples of knowledge

prompt retrieval and entity linking in accordance with
aspects of the technology.

[0018] FIG. 5 illustrates an example of knowledge prompt
retrieval in accordance with aspects of the technology.
[0019] FIGS. 6A-C illustrate t-SNE visualizations of
trained KPs in accordance with aspects of the technology.
[0020] FIGS. 7A-H illustrate tables of test results in accor-
dance with aspects of the technology.

[0021] FIGS. 8A-B illustrate example methods in accor-
dance with aspects of the technology.

DETAILED DESCRIPTION

[0022] Soft knowledge prompts (KPs) are used during the
training of “frozen” LMs. A goal is to train an external
memory that is composed of a large set of soft prompts that
encode world knowledge. As discussed herein, a method is
employed to train knowledge-driven soft prompts via self-
supervised learning on data from one or more knowledge
bases. The resulting KPs, function as an auxiliary memory
of the LMs that is activated when solving knowledge-
intensive tasks. This is different from other possible appli-
cations of soft prompts that concatenate a fixed small set of
embeddings to every input. For instance, the instant

Aug. 21, 2025

approach learns a very large set of KPs, which are sparsely
activated depending on the input.

[0023] One aspect of the technology focuses on entity-
centric KPs, which means that each prompt primarily
encodes information about one entity from a given knowl-
edge base. In one scenario, Wikidata triples may be used as
the training data, and the processes here can involve train
KPs for the top X entities (e.g., a large set of entities such
as over 1 million entities), based on the number of triples. A
qualitative analysis of KPs has been performed using t-SNE
plots and k-nearest neighbor approaches. In terms of quan-
titative analysis, experimental results have been obtained for
three knowledge intensive tasks: question answering, fact
checking and relation classification. For all datasets, the use
of KPs can be shown to improve the performance of the T5
baseline. Such results demonstrate that KPs are an effective
way to expand the memory of frozen LMs.

Example Systems and Methods

[0024] The present technology will now be described with
respect to the following exemplary systems and methods.
FIG. 1 illustrates a system 100 for handing queries, such as
via a question and answer app. The system 100 may include
one or more processors 102 and memory 104 for storing
data. In one example, the memory 104 may store a set of
language models, shown here as including first (LM1) and
second (LM2) models. A user 106 can formulate a query 108
on their client device 110, which may be, e.g., a laptop or
desktop computer, a tablet PC, a mobile phone or PDA, a
smartwatch, a smart home appliance, etc.

[0025] The query 108 is sent to the system 100 via a
network 112. Once the system applies a selected language
model (LM) to the query 108, it returns an answer 114 via
the network 112. The question may be posed and the answer
presented via an app 116 displayable to the user 106 on a
graphical user interface (GUI) 118 of the user’s client device
110.

[0026] Different approaches have been proposed to train
soft prompts. For example, one approach does the following:
(1) for a task in the dataset, prepend a fixed number of
embeddings (soft prompts) to the word embeddings of every
input, and (2) during training, update the soft prompt while
keeping all the other parameters of the frozen LM.

[0027] However, aspects of the technology discussed
herein involve training soft knowledge prompts (KPs) to
encode world knowledge, which may work as an external
memory for LMs. Thus, one aspect focuses on the training
of entity-centric KPs, each of which stores the knowledge
related to a specific entity from a knowledge base (KB). In
other words, the KP of an entity encodes information from
the KB triples that mention the entity either as a subject or
an object. The triples are of the form (subject, relation,
object). Thus, in the example of FIG. 1, the subject may be
Peter Parker, the relation is spouse (or wife), and the object
would be Mary Jane Watson.

[0028] According to one scenario, an encoder-decoder LM
may be employed, which may use a Transformer-type archi-
tecture. According to another scenario, an encoder-only LM
may be utilized.

[0029] By way of example only, a suitable Transformer
architecture is presented in FIG. 2. In particular, system 200
of FIG. 2 is implementable via a computer program by
processors of one or more computers in one or more
locations. The system 200 receives an input sequence 202
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(e.g., a query) and processes the input sequence 202 to
transduce the input sequence 202 into an output sequence
204 (e.g., an answer). The input sequence 202 has a respec-
tive network input at each of multiple input positions in an
input order and the output sequence 204 has a respective
network output at each of multiple output positions in an
output order.

[0030] System 200 can perform any of a variety of tasks
that require processing sequential inputs to generate sequen-
tial outputs. System 200 includes an attention-based
sequence transduction neural network 206, which in turn
includes an encoder neural network 208 and a decoder
neural network 210. The encoder neural network 208 is
configured to receive the input sequence 202 and generate a
respective encoded representation of each of the network
inputs in the input sequence. An encoded representation is a
vector or other ordered collection of numeric values. The
decoder neural network 210 is then configured to use the
encoded representations of the network inputs to generate
the output sequence 204. Generally, both the encoder 208
and the decoder 210 are attention-based. In some cases,
neither the encoder nor the decoder includes any convolu-
tional layers or any recurrent layers. The encoder neural
network 208 includes an embedding layer (input embed-
ding) 212 and a sequence of one or more encoder subnet-
works 214. The encoder neural 208 network may N encoder
subnetworks 214.

[0031] The embedding layer 212 is configured, for each
network input in the input sequence, to map the network
input to a numeric representation of the network input in an
embedding space, e.g., into a vector in the embedding space.
The embedding layer 212 then provides the numeric repre-
sentations of the network inputs to the first subnetwork in the
sequence of encoder subnetworks 214. The embedding layer
212 may be configured to map each network input to an
embedded representation of the network input and then
combine, e.g., sum or average, the embedded representation
of the network input with a positional embedding of the
input position of the network input in the input order to
generate a combined embedded representation of the net-
work input. In some cases, the positional embeddings are
learned. As used herein, “learned” means that an operation
or a value has been adjusted during the training of the
sequence transduction neural network 206. In other cases,
the positional embeddings may be fixed and are different for
each position.

[0032] The combined embedded representation is then
used as the numeric representation of the network input.
Each of the encoder subnetworks 214 is configured to
receive a respective encoder subnetwork input for each of
the plurality of input positions and to generate a respective
subnetwork output for each of the plurality of input posi-
tions. The encoder subnetwork outputs generated by the last
encoder subnetwork in the sequence are then used as the
encoded representations of the network inputs. For the first
encoder subnetwork in the sequence, the encoder subnet-
work input is the numeric representations generated by the
embedding layer 212, and, for each encoder subnetwork
other than the first encoder subnetwork in the sequence, the
encoder subnetwork input is the encoder subnetwork output
of the preceding encoder subnetwork in the sequence.
[0033] Each encoder subnetwork 214 includes an encoder
self-attention sub-layer 216. The encoder self-attention sub-
layer 216 is configured to receive the subnetwork input for
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each of the plurality of input positions and, for each par-
ticular input position in the input order, apply an attention
mechanism over the encoder subnetwork inputs at the input
positions using one or more queries derived from the
encoder subnetwork input at the particular input position to
generate a respective output for the particular input position.
In some cases, the attention mechanism is a multi-head
attention mechanism as shown. In some implementations,
each of the encoder subnetworks 214 may also include a
residual connection layer that combines the outputs of the
encoder self-attention sub-layer with the inputs to the
encoder self-attention sub-layer to generate an encoder
self-attention residual output and a layer normalization layer
that applies layer normalization to the encoder self-attention
residual output. These two layers are collectively referred to
as an “Add & Norm” operation in FIG. 2.

[0034] Some or all of the encoder subnetworks can also
include a position-wise feed-forward layer 218 that is con-
figured to operate on each position in the input sequence
separately. In particular, for each input position, the feed-
forward layer 218 is configured receive an input at the input
position and apply a sequence of transformations to the input
at the input position to generate an output for the input
position. The inputs received by the position-wise feed-
forward layer 218 can be the outputs of the layer normal-
ization layer when the residual and layer normalization
layers are included or the outputs of the encoder self-
attention sub-layer 216 when the residual and layer normal-
ization layers are not included. The transformations applied
by the layer 218 will generally be the same for each input
position (but different feed-forward layers in different sub-
networks may apply different transformations).

[0035] In cases where an encoder subnetwork 214
includes a position-wise feed-forward layer 218 as shown,
the encoder subnetwork can also include a residual connec-
tion layer that combines the outputs of the position-wise
feed-forward layer with the inputs to the position-wise
feed-forward layer to generate an encoder position-wise
residual output and a layer normalization layer that applies
layer normalization to the encoder position-wise residual
output. As noted above, these two layers are also collectively
referred to as an “Add & Norm” operation. The outputs of
this layer normalization layer can then be used as the outputs
of the encoder subnetwork 214.

[0036] Once the encoder neural network 208 has gener-
ated the encoded representations, the decoder neural net-
work 210 is configured to generate the output sequence in an
auto-regressive manner. That is, the decoder neural network
210 generates the output sequence, by at each of a plurality
of generation time steps, generating a network output for a
corresponding output position conditioned on (i) the
encoded representations and (ii) network outputs at output
positions preceding the output position in the output order.
In particular, for a given output position, the decoder neural
network generates an output that defines a probability dis-
tribution over possible network outputs at the given output
position. The decoder neural network can then select a
network output for the output position by sampling from the
probability distribution or by selecting the network output
with the highest probability.

[0037] Because the decoder neural network 210 is auto-
regressive, at each generation time step, the decoder network
210 operates on the network outputs that have already been
generated before the generation time step, i.e., the network



US 2025/0265417 Al

outputs at output positions preceding the corresponding
output position in the output order. In some implementa-
tions, to ensure this is the case during both inference and
training, at each generation time step the decoder neural
network 210 shifts the already generated network outputs
right by one output order position (i.e., introduces a one
position offset into the already generated network output
sequence) and (as will be described in more detail below)
masks certain operations so that positions can only attend to
positions up to and including that position in the output
sequence (and not subsequent positions). While the remain-
der of the description below describes that, when generating
a given output at a given output position, various compo-
nents of the decoder 210 operate on data at output positions
preceding the given output positions (and not on data at any
other output positions), it will be understood that this type of
conditioning can be effectively implemented using shifting.

[0038] The decoder neural network 210 includes an
embedding layer (output embedding) 220, a sequence of
decoder subnetworks 222, a linear layer 224, and a sofimax
layer 226. In particular, the decoder neural network can
include N decoder subnetworks 222. However, while the
example of FIG. 2 shows the encoder 208 and the decoder
210 including the same number of subnetworks, in some
cases the encoder 208 and the decoder 210 include different
numbers of subnetworks. The embedding layer 220 is con-
figured to, at each generation time step, for each network
output at an output position that precedes the current output
position in the output order, map the network output to a
numeric representation of the network output in the embed-
ding space. The embedding layer 220 then provides the
numeric representations of the network outputs to the first
subnetwork 222 in the sequence of decoder subnetworks.

[0039] In some implementations, the embedding layer 220
is configured to map each network output to an embedded
representation of the network output and combine the
embedded representation of the network output with a
positional embedding of the output position of the network
output in the output order to generate a combined embedded
representation of the network output. The combined embed-
ded representation is then used as the numeric representation
of the network output. The embedding layer 220 generates
the combined embedded representation in the same manner
as described above with reference to the embedding layer
212.

[0040] Each decoder subnetwork 222 is configured to, at
each generation time step, receive a respective decoder
subnetwork input for each of the plurality of output positions
preceding the corresponding output position and to generate
a respective decoder subnetwork output for each of the
plurality of output positions preceding the corresponding
output position (or equivalently, when the output sequence
has been shifted right, each network output at a position up
to and including the current output position). In particular,
each decoder subnetwork 222 includes two different atten-
tion sub-layers: a decoder self-attention sub-layer 228 and
an encoder-decoder attention sub-layer 230. Each decoder
self-attention sub-layer 228 is configured to, at each gen-
eration time step, receive an input for each output position
preceding the corresponding output position and, for each of
the particular output positions, apply an attention mecha-
nism over the inputs at the output positions preceding the
corresponding position using one or more queries derived
from the input at the particular output position to generate a
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updated representation for the particular output position.
That is, the decoder self-attention sub-layer 228 applies an
attention mechanism that is masked so that it does not attend
over or otherwise process any data that is not at a position
preceding the current output position in the output sequence.
[0041] Each encoder-decoder attention sub-layer 230, on
the other hand, is configured to, at each generation time step,
receive an input for each output position preceding the
corresponding output position and, for each of the output
positions, apply an attention mechanism over the encoded
representations at the input positions using one or more
queries derived from the input for the output position to
generate an updated representation for the output position.
Thus, the encoder-decoder attention sub-layer 230 applies
attention over encoded representations while the decoder
self-attention sub-layer 228 applies attention over inputs at
output positions.

[0042] Inthe example of FIG. 2, the decoder self-attention
sub-layer 228 is shown as being before the encoder-decoder
attention sub-layer in the processing order within the
decoder subnetwork 222. In other examples, however, the
decoder self-attention sub-layer 228 may be after the
encoder-decoder attention sub-layer 230 in the processing
order within the decoder subnetwork 222 or different sub-
networks may have different processing orders. In some
implementations, each decoder subnetwork 222 includes,
after the decoder self-attention sub-layer 228, after the
encoder-decoder attention sub-layer 230, or after each of the
two sub-layers, a residual connection layer that combines
the outputs of the attention sub-layer with the inputs to the
attention sub-layer to generate a residual output and a layer
normalization layer that applies layer normalization to the
residual output. These two layers being inserted after each of
the two sub-layers, both referred to as an “Add & Norm”
operation.

[0043] Some or all of the decoder subnetwork 222 also
include a position-wise feed-forward layer 232 that is con-
figured to operate in a similar manner as the position-wise
feed-forward layer 218 from the encoder 208. In particular,
the layer 232 is configured to, at each generation time step:
for each output position preceding the corresponding output
position: receive an input at the output position, and apply
a sequence of transformations to the input at the output
position to generate an output for the output position. The
inputs received by the position-wise feed-forward layer 232
can be the outputs of the layer normalization layer (follow-
ing the last attention sub-layer in the subnetwork 222) when
the residual and layer normalization layers are included or
the outputs of the last attention sub-layer in the subnetwork
222 when the residual and layer normalization layers are not
included. In cases where a decoder subnetwork 222 includes
a position-wise feed-forward layer 232, the decoder subnet-
work can also include a residual connection layer that
combines the outputs of the position-wise feed-forward
layer with the inputs to the position-wise feed-forward layer
to generate a decoder position-wise residual output and a
layer normalization layer that applies layer normalization to
the decoder position-wise residual output. These two layers
are also collectively referred to as an “Add & Norm”
operation. The outputs of this layer normalization layer can
then be used as the outputs of the decoder subnetwork 222.
[0044] At each generation time step, the linear layer 224
applies a learned linear transformation to the output of the
last decoder subnetwork 222 in order to project the output of
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the last decoder subnetwork 222 into the appropriate space
for processing by the softmax layer 226. The softmax layer
226 then applies a softmax function over the outputs of the
linear layer 224 to generate the probability distribution
(output probabilities) 234 over the possible network outputs
at the generation time step. The decoder 210 can then select
a network output from the possible network outputs using
the probability distribution, to output final result 204.

External Memory for Language Models

[0045] As noted above, the approach may train a memory
external to the language model, in which the external
memory contains soft knowledge prompts that are used to
enhance the world knowledge of the language model. FIG.
3 illustrates a functional arrangement 300, in which there is
a language model 302 and an external memory 304. The
external memory 304 can maintain a large set of soft
prompts that encode world knowledge. In response to a
query, the external memory is triggered to supply one or
more knowledge prompts to the language model. The lan-
guage model, which was previously trained, uses the knowl-
edge prompt(s) to effectively expand its own memory and
provide a corresponding answer to the query.

[0046] There are several technical advantages to this
approach. For instance, the external memory 304 may be
sparse, as only a fraction of it needs to be used for an input.
Thus, the trained language model can employ a small
encoder-decoder with a very large sparse external memory.
The external memory space can grow or shrink over time as
warranted. And in some instances, trusted knowledge bases
can be used to train soft knowledge prompts and potentially
improve factuality.

[0047] In many instances, it would be unfeasible to retrain
the language model. Thus, the soft knowledge prompts are
a way to achieve the desired result while the language model
can be “frozen”.

Knowledge Prompt Training

[0048] As discussed above, entity-centric KPs are trained
so that each one stores the knowledge related to a specific
entity. FIG. 4A illustrates an approach 400 for training
knowledge prompts. The illustrated approach in this
example is general, and can be used with any textual input
as long as the entities of interest are already identified/
linked.

[0049] The KPs in this scenario are trained with a masked
language modeling (MLM) objective, where the goal is to
generate the object entity of a KB triple given the subject
entity and relation, and vice versa. As an example, the
input/target pair “Germany capital <MASK>"/“Berlin” will
be used to update the KP for Germany, while the pair
“<MASK> capital Berlin”/“Germany” will be used to
update the KP for Berlin.

[0050] The entity embedding matrix for the set of soft
knowledge prompts can be very large (e.g., billions of
entries) and using all of them as inputs to the encoder or
decoder may be impractical. Therefore, according to one
aspect of the technology an efficient way to rank KPs based
on their importance to the input text involves training a KP
such that it summarizes the information in the input text that
is important to retrieve relevant KPs. This is done via
back-propagation according to a contrastive loss function.
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[0051] In the example of FIG. 4A, query 402 the input/
target pair is Peter Parker+ and married, while the mask is
<M1>. This information is applied as a set of word embed-
dings 404, and is sent to a separate database 406 of soft
knowledge prompts (as shown by the dashed arrow). A
relevant entity (soft) knowledge prompt 408 is retrieved
from the database 406 and concatenated or otherwise added
to the set of word embeddings. This information is collec-
tively input to (frozen) language model 410. The language
model 410 evaluates the input information based on its prior
training, where the relevant entity KP 408 augments the
word embeddings to arrive at answer 412 (here, Mary Jane
Watson). As shown by dotted arrow 414, error or loss
information can be back-propagated through the language
model 410 in order to update the relevant entity KP 408. The
corresponding soft knowledge prompt in the database 406
can then be updated accordingly.

[0052] According to one aspect of knowledge prompt
training, the KPs may be randomly initialized. In this case,
they may be updated only when the corresponding entities
appear (not masked) in the input. This makes the training of
KPs sparse and parallelizable. Given an input triple with the
object entity being masked, a training iteration may involve
the following steps. First, convert the input text (triple) into
word embeddings and retrieve the KP of the subject entity,
e.g., according to a lookup operation. Then concatenate the
KP to the sequence of word embeddings of the input text.
Next, predict the object entity name and compute the cross-
entropy loss or error. Then back-propagate the loss (error)
through the frozen LM to the KP, and update the KP using
stochastic gradient descent or another suitable back-propa-
gation technique.

[0053] As noted above, FIG. 4A shows a generalized
approach. Depending on the language model architecture,
the implementation may vary. For instance, the use of an
encoder-decoder language mode gives the flexibility to
introduce KPs at either encoder or decoder. For instance,
FIG. 4B illustrates an example 420 with an encoder-decoder
architecture in which the KPs are introduced as inputs to the
encoder, while FIG. 4C illustrates another example 440 in
which the KPs are introduced as inputs to the decoder.
[0054] As shown in FIG. 4B, KP 408 is concatenated to
the word embeddings 404, and then this set of information
422 is input to encoder 424. The encoder outputs 426 are
processed by decoder 428. Here, back-propagation through
the decoder 428 and encoder 424 is shown by the dashed
arrow 430. In contrast, as shown in FIG. 4C, KP 408 is
concatenated to the output 442 of the encoder 424, and that
information is processed by the decoder 428 to generate the
answer. In this case, back-propagation through the decoder
428 is shown by the dashed arrow 444. This latter approach
makes KPs accessible only by the decoder via cross-atten-
tion. Experimental results for these different approaches are
presented below.

Using Soft Knowledge Prompts in Downstream Tasks

[0055] Using KPs during the finetuning of the LM can be
done as follows. Given the input sequence, e.g., a question,
the relevant KPs are retrieved and concatenated to the word
embeddings of the input, to generate or predict the answer.
At the model finetuning stage, the KPs can be frozen and
only the parameters of the LM may be updated, as the KPs
are used as pre-trained external knowledge. This can be
helpful when using relatively small LMs. Alternatively or
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additionally, one could also use task-specific soft prompts
instead of finetuning the parameters of the LM.

[0056] Retrieving KPs that are relevant to the input
sequence is important for good performance in the down-
stream task. KPs are most useful when they contain the
knowledge that is helpful to solve the input at hand. Entity
linking can be employed (e.g., based on input text) as a way
to retrieve relevant KPs during training/inference for down-
stream tasks. Given an input, entity linking is first performed
to identify the entities mentioned in the input. Then, a
lookup operation can be done to retrieve the KPs of the
identified entities.

[0057] FIG. 4D illustrates an example 460 for learning to
retrieve KPs. Here, word embeddings 462 are input to an
encoder 464. The vectors 466 output by the encoder 464 is
used to produce a single vector that is used to query the KPs
database (here, KP memory 406). The single vector is
generated by first applying max pooling over the vectors
output by the encoder, then multiplying the resulting vector
by a learned matrix of parameters (the projection). Both are
shown occurring at block 468. Next, the cosine similarity is
computed between the projected vector (search vector) 470
and the KPs 472 in the memory, as shown by contrastive loss
block 474. The system can then retrieve the top-k KPs form
the memory 406 that are closest to the search vector 470, as
shown by arrow 476.

[0058] This approach can be used when injecting KPs into
the decoder, because the output of the encoder is used in
order to create the search vector. An alternative is to train a
separate encoder network for the task of creating the search
vector. Here, when using a separate encoder to generate the
search vector, the system can use the retrieved KPs as input
to the LM’s encoder.

[0059] FIG. 4E illustrates an example 480 in which an
entity linker 482 is used to help identify relevant KPs from
the memory 406. Here, the query is provided to both the
entity linker 482 and to the encoder 484. The goal in entity
linking is to identify and disambiguate named entities that
appear in the input text. Based on the context, the entity
linker should be able to distinguish between Peter Parker the
photographer and Peter Parker the machine learning
researcher. The information about what entities appear in the
text (which is the output of entity linker) is used to look up
the KPs of those entities from the KP dataset. As shown in
this example, the result 488 from the dataset is incorporated
(e.g., concatenated) with the vectors 486 output by the
encoder 484. This information is input to the decoder 490,
which outputs information regarding the answer (e.g., Mary
Jane Watson, answering the question “who is Peter Parker
married t0?”).

[0060] FIG. 5 illustrates an example 500 of the approach
of retrieving KPs with a search vector/prompt. Here, given
the input text 502, it is converted into word embeddings 504.
The word embeddings 504 are concatenated with an entity
search prompt 506, and given as input to encoder 508. The
encoder 508 generates a set of outputs 510 for processing by
the decoder 512. A contextualized entity search prompt 514
may be separately generated by the encoder 508, which is
sent to KP database 516. Alternatively, the contextualized
search prompt 514 may be derived from the entity linking
approach discussed above regarding FIG. 4E, instead of
being generated by the encoder 508. The contextualized
entity search prompt 514 is used to rank entity KPs. By way
of example, the score for each KP may be the result of the
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dot product between the prompt 514 and that KP. Then, the
system selects the top k entity soft knowledge prompts 518,
concatenates them to the output of the encoder at 520, and
provides this as input to decoder 522. Here, the decoder 522
decodes the task output 524 and computes the cross-entropy
loss. The decoder can then be updated using back-propaga-
tion and gradient descent. Note that in this example, the
encoder 508, KPs, and the entity prompt search 506 are
frozen during finetuning for downstream tasks.

[0061] According to an aspect of the technology, the
system keeps the LM frozen during the learning of KPs,
which guarantees (i) that one can always use the same LM
again to add new embeddings to the KP matrix (allowing the
external memory to grow), (ii) there is no adverse impact on
the LM’s ability to produce good text and “understand”
language, and (iii) the system can continually update the
external memory as new data/facts about entities arrive.
[0062] Note that KPs can be given as input to the decoder
in order to avoid an n” self-attention complexity that can
occur when giving them as input to the encoder. Thus, for
tasks such as question answering, the decoder input
approach may be more suitable as the system may evaluate
a very large number of KPs at the same time. Because KPs
are used in the decoder via cross-attention, this supports the
use of a large number of KPs.

Experimental Setup

[0063] The following provides a discussion regarding an
experimental setup and testing of the technology described
herein.

[0064] Wikidata triples were adopted as the source of data
to train KPs. The setup started with a set of 45M pre-
processed triples that was previously preprocessed. Next,
triples were filtered out whose subject entity appears less
than 12 times as subject entity in the dataset. This resulted
in a set of 23M triples containing 1.1M distinct subject
entities, which form the entity vocabulary and, respectively,
the number of KPs in the following experiments.

[0065] The T5.1.1 model family was adopted for testing.
Experiments were performed with three model sizes: small,
base and large, which contain 60M, 220M and 770M param-
eters, respectively. T5.1.1 checkpoints were used that were
adapted from the original T5.1.1 checkpoints by running an
additional 100K training steps using the “LLM” objective
discussed in “Exploring the limits of transfer learning with
a unified text-to-text transformer”, by Raffel et all, Journal
of Machine Learning Research, 21(140):1-67, 2020.
[0066] It was noticed that these adapted checkpoints make
the training of soft prompts easier. Although an encoder-
decoder LM was used in testing, as noted herein the tech-
nology is not limited to this type of architecture and can be
used with encoder only models, such as BERT, or decoder-
only models like GPT2.

[0067] The input length for training KPs may be short
because the examples were masked serialized triples (con-
catenation of Subject/Object entity and a relation). There-
fore, the input length was set to 64, which allowed for use
of very large batch sizes, e.g., between 4K and 8K, depend-
ing on the model size. Note that the objective when training
KPs was to memorize the training data. Hence, KP training
ran for up to 200 epochs.

[0068] In the beginning of the training, KPs were initial-
ized by randomly sampling from the word embeddings
matrix. This allowed KPs to start from a region that is known
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by the LM, which made the training smoother and less
sensitive to hyperparameters. After training, KPs were kept
frozen during LM finetuning for downstream tasks. There-
fore, for each model size, the exact same set of KPs was used
in the experiments with the different downstream tasks and
datasets.

[0069] In all experiments where KPs were used, the input
text was preprocessed using Google Cloud Natural Lan-
guage API 1 to perform entity linking. Experiments were
performed with three different knowledge intensive tasks:
(1) question answering (QA), (2) fact checking and (3)
relation classification. In terms of datasets, for QA experi-
ments Entity Questions (see Sciavolino et al., “Simple
entity-centric questions challenge dense retrievers”, in Pro-
ceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 6138-6148) and Trivi-
aQA (Joshi et al., “TriviaQA: A large scale distantly super-
vised challenge dataset for reading comprehension”, in
Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics, pages 1601-1611, 2017)
datasets. For fact checking, the FEVER dataset was used
(Thorne et al., “FEVER: a large-scale dataset for fact
extraction and VERification”, in Proceedings of the 2018
Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 809-819)). For
relation classification, the TACRED dataset was used
(Zhang et al., “Position-aware attention and supervised data
improve slot filling”, in Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing,
pages 35-45).

[0070] In the question answering experiments, the closed-
book QA (CBQA) setup was followed (Roberts et al., “How
much knowledge can you pack into the parameters of a
language model?”, in Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing
(EMNLP), pages 5418-5426). In this setup, the model has no
access to external text, which means that there is no retrieval
step and the model has to solve the task using the world
knowledge it acquired from pretraining and finetuning data
only. During training, the default hyperparameters were used
as much as possible except for the learning rate, which was
finetuned on the development sets. Exact matching (EM)
was used as the evaluation metric in CBQA.

[0071] A qualitative assessment of KPs was performed
through different experiments including t-SNE visualiza-
tions, analysis of entity similarity in KP space and evalua-
tion of KPs for QA when golden entity linking was provided.
One of the main goals in the qualitative assessment of KPs
was to check whether the learned KPs can model the
structure of the training data. An approach that can give
clues about the data structure learning aspect are t-SNE
visualizations. FIG. 6A, shows a t-SNE visualization of
100K randomly selected KPs that were trained using
T5-BASE model on Wikidata triples. It can be seen here that
KPs form multiple well separated clusters. FIG. 6B illus-
trates another t-SNE visualization. This image is of 230k
KPs learned on Wikidata triples, with a prompt size of 512.
FIG. 6C illustrates yet another t-SNE visualization of the
same 230k KPs learned on Wikidata triples, with a prompt
size of 1024. Zooming in into these clusters, one can notice
that they are very coherent. There are clusters about com-
panies, celestial objects, movies, locations, etc. This is a
good indication that, although trained independently, KPs
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encapsulate a notion of similarity between entities that
aligns well with the KB structure.

[0072] The testing also investigated the quality of the
entity similarity captured by KPs using cosine similarity in
the KP space to retrieve the k-nearest neighbors of different
search entities and model sizes. In Table 1 of FIG. 7A, the
top four neighbors of four different entities are shown. This
presents results for TS models of three different sizes. The
top two entities (Barack Obama and Roger Waters) are
cherry picked popular entities to make it easier for the reader
to grasp the quality of the results. The bottom two entities
(Fairmont station and lacobeni, Sibiu) were randomly
selected. The KP space learned by the three model sizes can
produce high quality nearest neighbors for the four different
entities. For instance, in the case of the search entity
Fairmont station, which is a streetcar stop in Salt Lake
City-Utah-USA, all the retrieve entities are also streetcar
stops in Salt Lake City. Similar results can be seen for the
other entities, where the retrieved neighbors share multiple
properties (e.g., same occupation and nationality) with the
search entity.

[0073] In order to assess in a controlled manner whether
KPs can be used as a knowledge source for LMs, an
experiment was performed on closed-book QA using the
Simple Questions dataset (see Bordes et al., “Large-scale
simple question answering with memory networks”, CoRR,
2015). This dataset was a good fit because it contains golden
information about the entity involved in the question (golden
entity linking). The Simple Questions version was used that
was processed by to align the original Freebase entities to
Wikidata entities (see Diefenbach et al., “Question answer-
ing benchmarks for wikidata”, in Proceedings of the ISWC
2017 Posters & Demonstrations and Industry Tracks co-
located with 16th International Semantic Web Conference
(ISWC 2017).

[0074] The dataset was further preprocessed to contain
only questions involving one of the 1.1M entities for which
KPs were trained. Table 2 of FIG. 7B presents two sets of
experiments for models of different sizes. This compares
LMs performances on Simple Questions with and without
KPs as a knowledge source, measured by exact match (EM)
score (%). The KPs were retrieved using golden entity
linking information. Most performant results for each setup
are marked in bold. In the first experiment it was checked
whether the use of KPs can improve the performance of the
models for zero-shot learning. In this scenario, one can see
that TS models without KPs performed very poorly and
achieve exact match (EM) score of 0 percent. The use of KPs
boosted the performance of all model sizes, with the base
and large models achieving EM of 8.8. In the finetuning
scenario, the use of KPs also brought a significant boost in
performance. In particular, for T5-Base the improvement is
of' ~24 points in EM. However, it is known that the improve-
ment is actually larger than this because for some questions
there were multiple good answers (e.g., songwriter and
singer are valid occupations for John Lennon), but the
Simple Questions dataset listed only a single answer. These
experimental results indicate that KPs are an effective
approach to store information about entities in a way that can
be readily used by the LM without any adaptation of the KPs
for the downstream QA task.

[0075] Table 3 in FIG. 7C presents experimental results
for two closed-book QA (CBQA) datasets and different T5
model sizes. In particular, this compares [LMs performances
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on Entity Questions and TriviaQA with and without KPs as
a knowledge source, measured by exact match (EM) score
(%). It can be seen that KPs provide a significant perfor-
mance improvement on the Entity Questions dataset, which
is an entity-centric QA task. For instance, the improvement
for T5-Base is of 7.7 points in EM. Interestingly,
T5-SMALLA+KPs outperformed T5-LARGE model by a
large margin, 30.8 vs 26.7, respectively. Although to a
smaller extent, KPs also brought performance improvements
for all model sizes on TriviaQA dataset.

[0076] Table 4 of FIG. 7D compares the performance of
T5-Base/Large+KPs with other recently published results on
CBQA for TriviaQA. As best understood, there was no
previous work that reported CBQA results for the Entity
Questions dataset. T5+KPs model does not perform as well
as the other CBQA approaches on TriviaQA. This may
mainly be due to the following factors: (1) in EaE, TOME
and T5-11B+SSM, the full LM is heavily pretrained on
Wikipedia text using entity focused objective functions,
which is known to make the model very effective to QA (see
Guu et al., “REALM: Retrieval-augmented language model
pre-training”, arXiv preprint arXiv: 2002.08909, 2020). In
the disclosed approach method, an entity focused objective
was used to train KPs only while the LM was frozen. Note
in Table 3, the “no KPs column” as the initial baseline had
poor results. Models like EaE and TOME update their
external memory component during finetuning for a new
task. The instant approach kept KPs frozen when finetuning
for a new task. Moreover, the model from the instant
approach is able to generate the answer token by token,
which is more prone to errors compared to the entity
retrieval approaches used in EaE and TOME. It is possible
that additional pretraining steps may hurt the performance
for CBQA.

[0077] Experimental results for the fact checking task are
presented in Table 5 of FIG. 7E. This table compares LMs
performances on fact checking dataset, FEVER (test split)
with and without KPs as a knowledge source, measured by
accuracy (%). Two baselines, Entities-as-Experts (see Févry
etal., “Entities as experts: Sparse memory access with entity
supervision”, in Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 4937-4951) and MentionMemory (see de
Jong et al., “Mention memory: incorporating textual knowl-
edge into transformers through entity mention attention”, in
International Conference on Learning Representations,
2022) are included.

[0078] It can be seen here that the use of KPs brings
significant improvements for the three model sizes on the
FEVER dataset. Compared to recent works that use LMs
with external memory, the instant T5-Base+KPs model has
similar performance to EaE, and T5-LARGEA+KPs achieves
results competitive to TOME-2 model. TOME-2 achieves
better results than EaE and T5+KPs because of the granu-
larity of its memory. While TOME-2 has an external
memory with 150M entries that store fine-grained informa-
tion about entities, both EaE and the present model have a
memory with about 1M entries only. The KP training
method presented herein allows to increase the granularity
of KPs in a straightforward manner. For instance, one can
use multiple KPs per entity, where each KP is trained using
a subset of the triples that mention the entity.

[0079] Table 6 of FIG. 7F presents experimental results for
a relation classification task using the original TACRED
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dataset. Here, F1 was used as the metric, and results are
presented for the test set. Similar to the other two tasks, in
relation classification KPs also provide performance
improvements for all three model sizes. Interestingly,
T5-Base+KPs outperform T5-LARGE by almost one point
in F1. Here, T5-Base+KPs achieves performance similar to
EaE and is competitive with KnowBERT. It is important to
note that KnowBERT uses entity types as input while both
EaE and the present approach do not use that additional
information.

[0080] As discussed above, KPs may be input directly to
the encoder or to the decoder of a given language model.
Table 7 of FIG. 7G presents a comparison of the results of
KP—Encoder (see, e.g., FIG. 4B) and KP—Decoder (see,
e.g., FIG. 4C) for the QA datasets. In both cases, KPs were
trained using T5-Base model and results are presented for
the dev set. Here, the KP—Encoder achieves better perfor-
mance likely because it allows interaction (self-attention)
between input and KPs in the encoder, which gives the
model more opportunity to select and extract the correct
information from KPs. On the other hand, the advantage of
KP—Decoder is that its training is faster because it is a
simpler optimization problem as the error does not have to
be backpropagated through the frozen encoder and KPs are
used via cross-attention in the decoder only. Note that in this
testing, KP—Decoder required 3x less training iterations to
converge compared to KP—Encoder.

[0081] Retrieving relevant KPs given an input is a funda-
mental task that has direct impact on the usefulness of KPs
for various applications. Beyond entity linking, another
approach to retrieve KPs is to transform the input into a
single dense vector, then search for the most similar vectors
in the KP space. Experiments have been conducted with this
strategy by training an external encoder that creates a vector
representation of the input. The external encoder has the
same architecture and size of the respective TS model. The
TEKGEN dataset was used (see Agarwal et al., “Knowledge
graph based synthetic corpus generation for knowledge-
enhanced language model pre-training”, in Proceedings of
the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Lan-
guage Technologies, pages 3554-3565), which contains
Wikipedia sentences mapped toWikidata triples, as a source
of noisy-labeled data to train the encoder via contrastive
loss. KPs are kept frozen during the training of the input
encoder. Table 8 of FIG. 7H presents a comparison between
T5+KP models that use either entity linking or search in the
KP space. The results were computed on TriviaQA. One can
see in the results that entity linking performed better for both
model sizes. Here, searching in KP space may not work well
because KPs are not optimized to be used in search. KPs are
trained to memorize knowledge in a way that can later be
extracted by the LM.

[0082] The contrastive loss or error may be determined
according to the following equation:

BT e
L(hfSp, e) = _10g[u],

T e o)
J

where h*? is the contextualized soft knowledge prompt, e;
is the entity embedding of the entity appearing in the input
i, and B is the set of soft knowledge prompts for all entities
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that appear in the current batch. Here, if input i contains
multiple entities, e, can be the average embedding.

Self-Supervised Tasks for Learning LM-Compatible KPs

[0083] The following are different examples of self-super-
vised tasks in accordance with the above-described tech-
niques. Note that the self-supervised tasks in the examples
may assume that KPs are given as input to the decoder, but
they could also be reformulated so that KPs can be given as
input to encoder. By way of example only, data for the tasks
could be obtained with the use of a knowledge base+web
data. Furthermore, it may be desirable to train with multiple
tasks at the same time. Here, four tasks are presented. The
first involves knowledge base completion, the second
involves a skip-gram model, the third predicts masked
entities/relations, and the fourth predicts a sentence. The
ultimate goal for these examples is to memorize the knowl-
edge base in the soft knowledge prompts, but in a way that
is useful for the language model.

[0084] Self-supervised Task 1 (KB completion): given an
KB triple, mask one of the entities or the relation and predict
the masked tokens. Here, the entity encoder input is: Peter
Parker <M1> Mary Jane Watson, and the decoder input is:
vlv2...vnel e2, where vl to vn are the embeddings output
by the encoder and el and e2 are the KPs of Peter Parker and
Mary Jane Watson, respectively. The decoder output in this
case would be: <M1> married to.

[0085] Self-supervised Task 2 (skip-gram model): predict
entities/relations of a path (random walk) from a knowledge
base (KB) given the entity in the center of the path. Here, a
path example is: Mary Jane Watson->married to->Peter
Parker->superhero power->spidey sense. The encoder input
is: Peter Parker, and the decoder input is: v1 v2 el, where v1
and v2 are the embeddings output by the encoder for “Peter”
and “Parker” and el is the KP of the entity “Peter Parker”.
The decoder output would be: Mary Jane Watson, married
to, Peter Parker, superhero power spidey sense.

[0086] Self-supervised Task 3: predict masked entities/
relations of a path from the KB. Here, the encoder input is:
<M1>married to Peter Parker <M2> spidey sense, while the
decoder input is: vl v2 ... vnel e2, where vl to vn are the
embeddings output by the encoder and el and e2 are the KPs
of entities “Peter Parker” and “spidey sense”, respectively.
In this case, the decoder output is: <M1>Mary Jane Watson
<M2> superhero power.

[0087] Self-supervised Task 4: given an entity, predict a
sentence (from Wikipedia) where the entity appears. Here, a
first encoder input is: Peter Parker, and the decoder input is:
vl v2 el, where v1 and v2 are the embeddings output by the
encoder for “Peter” and “Parker” and el is the KP of the
entity “Peter Parker”. In this case, the decoder output would
be: [Peter Benjamin Parker| (created August 1962) is an
American superhero who worked in New York from 1962 to
2023. In this example, assume a second encoder input is:
United States, and the decoder input is: v1 v2 el, where vl
and v2 are the embeddings output by the encoder for
“United” and “States” and el is the KP of the entity “United
States”. Here the output would be: Peter Benjamin Parker
(created August 1962) is an American superhero who
worked in New York of the [United States] from 1962 to
2023, where in the output, square brackets are used to
indicate the target entity to the model.

[0088] The above-described method and architecture for
training soft prompts, which can be used to extend the world
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knowledge of LMs. The testing demonstrates the generality
and usefulness of the resulting KPs by employing the same
set of KP to improve the LM performance in three different
tasks: question answering, fact checking, and relation clas-
sification. Although in this work a focus was on the use of
KPs for injecting knowledge into LMs, entity-centric KPs
may be suitable as a general-purpose knowledge base
embedding approach.

[0089] FIG. 8A illustrates an example computer-imple-
mented method 800 in accordance with aspects of the
technology. The method includes, at block 802, identifying,
by one or more processors of a computing system, a soft
knowledge prompt in response to a received input text. Then
at block 804 the method includes concatenating, by the one
or more processors, the identified soft knowledge prompt to
a sequence of word embeddings of the input text. At block
806 the method includes applying, by the one or more
processors, the concatenated soft knowledge prompt and the
sequence of word embeddings to a trained language model.
Then at block 808 the method includes predicting, by the
one or more processors, an object entity name, and at block
810 computing, by the one or more processors, a cross-
entropy loss. At block 812 the method includes updating the
identified soft knowledge prompt based on the computed
cross-entropy loss.

[0090] FIG. 8B illustrates another example computer-
implemented method 820, which includes at block 822
identifying, by one or more processors of a computing
system, a soft knowledge prompt in response to a received
query. The soft knowledge prompt is stored in memory
external to a trained language model. At block 824, the
method includes adding, by the one or more processors, the
identified soft knowledge prompt to information associated
with word embeddings of the received query to form a set of
combined information. At block 826 the method includes
applying, by the one or more processors, the set of combined
information to the trained language model, and at block 828
predicting, by the one or more processors, an object entity
name. Then at block 830 the method includes transmitting a
response to the received query according to the predicted
entity name.

[0091] As discussed herein, the self-supervised approach
to train knowledge driven soft prompts provides a technical
benefit to the computing system by injecting world knowl-
edge into LMs. The knowledge prompts can effectively
model the structure of the training data and can also improve
the performance of LMs on knowledge intensive tasks
handled by the computing system. And it has been shown
that soft prompts provide another technical benefit by stor-
ing data, which may be done as an alternative or in addition
to storing instructions on how to solve specific tasks.
[0092] It can be seen that KPs allow a better control of
what information is stored, by choosing what examples are
used to train the KPs. KPs are trained independently, there-
fore the training can be massively parallelized. As the LM is
kept frozen during the training of KPs, this does not affect
the language generation/understanding capabilities of the
LM. In addition, KPs can increase the capacity of small LMs
in a dynamic way. The system can add or remove KPs at any
time. Moreover, if information about a single entity changes,
the system can update that entity’s KP without changing
other KPs. This addresses the freshness issue of the LMs.
[0093] Although the technology herein has been described
with reference to particular embodiments, it is to be under-
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stood that these embodiments are merely illustrative of the
principles and applications of the present technology. It is
therefore to be understood that numerous modifications may
be made to the illustrative embodiments and that other
arrangements may be devised without departing from the
spirit and scope of the present technology as defined by the
appended claims.

1. A computer-implemented method, comprising:

applying, by one or more processors, a soft knowledge

prompt and a sequence of word embeddings of input
text to a trained language model;

computing, by the one or more processors, a cross-

entropy loss according to a predicted object entity
name;

updating the soft knowledge prompt based on the com-

puted cross-entropy loss; and

disambiguating a named entity that appears in the input

text.

2. The computer-implemented method of claim 1, further
comprising:

selecting the updated soft knowledge prompt in response

to a received query; and

applying the selected soft knowledge prompt to the

trained language model.

3. The computer-implemented method of claim 2, further
comprising, in response to applying the selected soft knowl-
edge prompt to the trained language model, transmitting a
response to the received query.

4. The computer-implemented method of claim 1,
wherein the trained language model is frozen prior to the
applying.

5. The computer-implemented method of claim 1,
wherein the soft knowledge prompt is stored in external
memory separate from the trained language model.

6. The method of claim 1, wherein applying the soft
knowledge prompt and the sequence of word embeddings to
the trained language model is done as an input to an encoder
of the trained language model.

7. The method of claim 1, wherein applying the soft
knowledge prompt and the sequence of word embeddings to
the trained language model is done as an input to a decoder
of the trained language model.

8. The method of claim 1, wherein updating the soft
knowledge prompt is done by back-propagating the com-
puted cross-entropy loss through the trained language
model.

9. The method of claim 1, wherein the cross-entropy loss
is computed by applying max pooling and projection to
vectors output by an encoder of the trained language model.

10. A computer-implemented method, comprising:

forming, by one or more processors of a computing

system, a set of combined information according to an
identified soft knowledge prompt;

applying, by the one or more processors, the set of

combined information to a trained language model;
transmitting a response to a received query according to
a predicted entity name, based on the set of combined
information applied to the trained language model; and
disambiguating a named entity that appears in the
received query.

11. The method of claim 10, further comprising applying
identification of the soft knowledge prompt to memory to
retrieve the soft knowledge prompt.
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12. The method of claim 10, wherein applying the set of
combined information to the trained language model is done
as an input to an encoder of the trained language model.

13. The method of claim 10, wherein applying the set of
combined information to the trained language model is done
as an input to a decoder of the trained language model.

14. A computing system, comprising:

memory configured to store a set of soft knowledge

prompts; and

one or more processors operatively coupled to the

memory, the one or more processors being configured

to:

apply a soft knowledge prompt and a sequence of word
embeddings of input text to a trained language
model;

compute a cross-entropy loss according to a predicted
object entity name;

update the soft knowledge prompt based on the com-
puted cross-entropy loss; and

disambiguate a named entity that appears in the input
text.

15. The computing system of claim 14, wherein applica-
tion of the soft knowledge prompt and the sequence of word
embeddings to the trained language model is done as an
input to an encoder of the trained language model.

16. The computing system of claim 14, wherein applica-
tion of the soft knowledge prompt and the sequence of word
embeddings to the trained language model is done as an
input to a decoder of the trained language model.

17. The computing system of claim 14, wherein the
update of the soft knowledge prompt is done by back-
propagating the computed cross-entropy loss through the
trained language model.

18. The computing system of claim 14, wherein the
cross-entropy loss is computed by applying max pooling and
projection to vectors output by an encoder of the trained
language model.

19. A computing system, comprising:

memory configured to store a set of soft knowledge

prompts; and

one or more processors operatively coupled to the

memory, the one or more processors being configured

to:

form a set of combined information according to an
identified soft knowledge prompt;

apply the set of combined information to a trained
language model;

transmit a response to a received query according to a
predicted entity name, based on the set of combined
information applied to the trained language model;
and

disambiguate a named entity that appears in the
received query.

20. The computing system of claim 19, wherein applica-
tion of the set of combined information to the trained
language model is done as an input to an encoder of the
trained language model.

21. The computing system of claim 19, wherein applica-
tion of the set of combined information to the trained
language model is done as an input to a decoder of the
trained language model.

#* #* #* #* #*
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