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video downsampler configured to receive an input video
sequence having a first display resolution, and to map the
input video sequence to a lower resolution video sequence
having a second display resolution lower than the first
display resolution. The system also includes a neural net-
work-based (NN-based) proxy video codec configured to
transform the lower resolution video sequence into a
decoded proxy bitstream. In addition, the system includes an
upsampler configured to produce an output video sequence
using the decoded proxy bitstream.
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Providing, to a machine learning (ML} model-
based video downsampler, an input video

sequence having a first display resolution 474

Mapping, using the ML model-based video
downsampler, the input video sequence
to a lower resolution video segquence
having a second display resolution lower
than the first display resolution

Transforming, using a neural network-based |

{NN-based) proxy video codec, the lower
resolution video sequence info a

decoded proxy bilstream

Producing, using an upsampler receiving the
decoded proxy bitstream, an oulput video
sequence corresponding to the input video
sequence and having a display resolution

higher than the second display resolution

Training the ML model-based video
downsampler using the input vides sequence,
the oulput video sequence, and an objective
function based on an estimated rate of the
lower resolution video sequence and a

. 475
plurality of perceptual loss functions
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1
CODEC RATE DISTORTION
COMPENSATING DOWNSAMPLER

BACKGROUND

Downsampling is an operation in content streaming sys-
tems to produce different representations in terms of bit rate
and resolution available to different types of client devices.
In modern streaming systems, the streaming server provides
different encoding representations in terms of resolutions
and bitrates, so that the client device can dynamically
download the representation that best matches its playback
context (e.g., display size and network conditions). In order
to provide such representations, the streaming server needs
to downsample the source video to different resolutions
before encoding. That downsampling may be performed
with filters that are not perceptually optimal.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a diagram of an exemplary video processing
system including a trained machine learning (ML) model-
based codec rate distortion compensating downsampler,
according to one implementation;

FIG. 2 shows a diagram of a training pipeline system for
training the ML model-based codec rate distortion compen-
sating downsampler shown in FIG. 1, according to one
implementation;

FIG. 3 depicts alternative exemplary architectures for the
ML model-based codec rate distortion compensating down-
sampler shown in FIG. 1, according to various implemen-
tations;

FIG. 4 shows a flowchart outlining an exemplary method
for training an ML model-based codec rate distortion com-
pensating downsampler, according to one implementation;

FIG. 5A shows a diagram depicting an exemplary condi-
tional downsampling network implemented by the video
processing system of FIG. 1, according to one aspect of the
present concepts; and

FIG. 5B shows a diagram depicting an exemplary condi-
tional downsampling network implemented by the video
processing system of FIG. 1, according to another aspect of
the present concepts.

DETAILED DESCRIPTION

The following description contains specific information
pertaining to implementations in the present disclosure. One
skilled in the art will recognize that the present disclosure
may be implemented in a manner different from that spe-
cifically discussed herein. The drawings in the present
application and their accompanying detailed description are
directed to merely exemplary implementations. Unless
noted otherwise, like or corresponding elements among the
figures may be indicated by like or corresponding reference
numerals. Moreover, the drawings and illustrations in the
present application are generally not to scale, and are not
intended to correspond to actual relative dimensions.

The present application discloses systems and methods
for training and utilizing a machine learning (ML) model-
based codec rate distortion compensating downsampler that
overcome the drawbacks and deficiencies in the art. Filters
such as bilinear, cubic, or Lanczos filters are not perceptu-
ally optimal, and do not take into account that the source
content will be encoded after downsampling. To that end, the
present application discloses a perceptually-optimized
approach to downsampling that includes 1) a learned down-
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2

sampler, 2) a proxy video codec that emulates a standard-
compatible image or video codec, 3) a temporally-aware
perceptual loss function, 4) a conditioning mechanism
allowing inference-time interpolation between different loss
functions, and 5) a mechanism for arbitrary scaling. The
downsampling solutions disclosed in the present application
are applied only to the source content. Consequently, those
solutions are compatible with existing image or video cod-
ing pipelines and do not require any change on the client
side, while providing improved rate distortion performance
in terms of perceptually aware quality metrics. Moreover, in
some implementations, the present codec rate distortion
compensating downsampling solution can be implemented
as an automated process.

It is noted that, as defined in the present application, the
terms “automation,” “automated,” and “automating” refer to
systems and processes that do not require the participation of
a human user, such as a human editor or system adminis-
trator. For example, although in some implementations a
human system administrator may review the performance of
the systems and methods disclosed herein, or, in the case of
conditional downsampling discussed below, may provide
user-defined perceptual loss function weights, that human
involvement is optional. Thus, in some implementations, the
processes described in the present application may be per-
formed under the control of hardware processing compo-
nents of the disclosed systems.

It is further noted that, as defined in the present applica-
tion, the expression “machine learning model” or “ML
model” may refer to a mathematical model for making
future predictions based on patterns learned from samples of
data or “training data.” Various learning algorithms can be
used to map correlations between input data and output data.
These correlations form the mathematical model that can be
used to make future predictions on new input data. Such a
predictive model may include one or more logistic regres-
sion models. Bayesian models, or neural networks (NNs).
Moreover, a “deep neural network,” in the context of deep
learning, may refer to an NN that utilizes multiple hidden
layers between input and output layers, which may allow for
learning based on features not explicitly defined in raw data.
In various implementations. NNs may be trained as classi-
fiers and may be utilized to perform image processing or
natural-language processing.

It is also noted that, as defined in the present application,
the feature “proxy video codec” refers to an NN-based or
other ML, model-based software module that has been pre-
trained to replicate the rate distortion characteristics of a
standard codec, such as H.264 or AV1, for example. By
contrast, existing deep learning-based codecs are not trained
to replicate the distortion characteristics of standard codecs.
As aresult, the downsampling artifacts introduced by exist-
ing deep learning-based codecs, are very different from
those produced by standard codecs and replicated by the
proxy video codec disclosed herein. That is to say, by
introducing a knowledge distillation-based proxy video
codec that aims to reproduce the output of a traditional
image/video codec, the approach disclosed in the present
application advantageously facilitates optimization of down-
sampler performance for the actual distortions that are
produced by standard codecs.

FIG. 1 shows a diagram of exemplary video processing
system 100 including trained ML model-based codec rate
distortion compensating video downsampler 112 (hereinat-
ter “ML model-based video downsampler 112”), according
to one implementation. As shown in FIG. 1, video process-
ing system 100 includes computing platform 102 having
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processing hardware 104 and system memory 106 imple-
mented as a computer-readable non-transitory storage
medium. According to the present exemplary implementa-
tion, system memory 106 stores trained ML model-based
video downsampler 112, video codec 114, and simulation
module 120.

As further shown in FIG. 1, video processing system 100
is implemented within a use environment including video
source 134 providing video sequence 138 (hereinafter “input
video sequence 138”), communication network 130, and
media content consumer 108 utilizing client device 140
including display 148. In addition, FIG. 1 shows network
communication links 132 communicatively coupling video
source 134 and client device 140 with video processing
system 100 via communication network 130. Also shown in
FIG. 1 is lower resolution video sequence 152, as well as
decoded bitstream 146 corresponding to input video
sequence 138.

It is noted that although video processing system 100 may
receive input video sequence 138 from video source 134 via
communication network 130 and network communication
links 132, in some implementations, video source 134 may
take the form of a content source integrated with computing
platform 102, or may be in direct communication with video
processing system 100, as shown by dashed communication
link 136. It is further noted that, in some implementations,
video processing system 100 may omit simulation module
120. Thus, in some implementations, system memory 106
may store trained ML model-based video downsampler 112
and video codec 114, but not simulation module 120.

Input video sequence 138 may include audio-video (AV)
content in the form of a video game, a movie, or episodic
programming content including streamed episodic content
or broadcasted episodic content, for example. Input video
sequence 138 may include a high-definition (HD) or ultra-
HD (UHD) baseband video signal with embedded audio,
captions, timecode, and other ancillary metadata, such as
ratings and parental guidelines. In some implementations,
input video sequence 138 may be provided by video source
134, such as a TV broadcast network or other media distri-
bution entity (e.g., a movie studio, a streaming platform,
etc.), utilizing secondary audio programming (SAP) or
Descriptive Video Service (DVS), for example.

With respect to the representation of video processing
system 100 shown in FIG. 1, it is noted that although trained
ML model-based video downsampler 112, video codec 114,
and simulation module 120 are depicted as being stored in
system memory 106 for conceptual clarity, more generally,
system memory 106 may take the form of any computer-
readable non-transitory storage medium. The expression
“computer-readable non-transitory storage medium.” as
used in the present application, refers to any medium,
excluding a carrier wave or other transitory signal that
provides instructions to processing hardware of a computing
platform, such as processing hardware 104 of computing
platform 102. Thus, a computer-readable non-transitory
storage medium may correspond to various types of media,
such as volatile media and non-volatile media, for example.
Volatile media may include dynamic memory, such as
dynamic random access memory (dynamic RAM), while
non-volatile memory may include optical, magnetic, or
electrostatic storage devices. Common forms of computer-
readable non-transitory storage media include, for example,
optical discs, RAM, programmable read-only memory
(PROM), erasable PROM (EPROM), and FLLASH memory.

It is further noted that although FIG. 1 depicts trained ML
model-based video downsampler 112, video codec 114, and

20

25

30

35

40

45

50

55

60

65

4

simulation module 120 as being mutually co-located in
system memory 106, that representation is also merely
provided as an aid to conceptual clarity. More generally,
video processing system 100 may include one or more
computing platforms, such as computer servers for example,
which may be co-located, or may form an interactively
linked but distributed system, such as a cloud-based system,
for instance. As a result, processing hardware 104 and
system memory 106 may correspond to distributed proces-
sor and memory resources within video processing system
100. Thus, it is to be understood that trained ML model-
based video downsampler 112, video codec 114, and simu-
lation module 120 may be stored remotely from one another
within the distributed memory resources of video processing
system 100. Moreover, and as noted above, in some imple-
mentations simulation module 120 may be omitted from
system memory 106.

Processing hardware 104 may include multiple hardware
processing units, such as one or more central processing
units, one or more graphics processing units, and one or
more tensor processing units, one or more field-program-
mable gate arrays (FPGAs), custom hardware for machine-
learning training or inferencing, and an application program-
ming interface (API) server, for example. By way of
definition, as used in the present application, the terms
“central processing unit” (CPU), “graphics processing unit”
(GPU), and “tensor processing unit” (TPU) have their cus-
tomary meaning in the art. That is to say, a CPU includes an
Arithmetic Logic Unit (ALU) for carrying out the arithmetic
and logical operations of computing platform 102, as well as
a Control Unit (CU) for retrieving programs from system
memory 106, while a GPU may be implemented to reduce
the processing overhead of the CPU by performing compu-
tationally intensive graphics or other processing tasks. A
TPU is an application-specific integrated circuit (ASIC)
configured specifically for artificial intelligence (Al) appli-
cations such as machine learning modeling.

In some implementations, computing platform 102 may
correspond to one or more web servers, accessible over a
packet-switched network such as the Internet, for example.
Alternatively, computing platform 102 may correspond to
one or more computer servers supporting a private wide area
network (WAN), local area network (LAN), or included in
another type of limited distribution or private network. As
yet another alternative, in some implementations, video
processing system 100 may be implemented virtually, such
as in a data center. For example, in some implementations,
video processing system 100 may be implemented in soft-
ware, or as virtual machines.

Although client device 140 is shown as a smart TV in
FIG. 1, that representation is provided merely as an example.
More generally, client device 140 may be any suitable
mobile or stationary computing device or system that imple-
ments data processing capabilities sufficient to provide a
user interface, support connections to communication net-
work 130, and implement the functionality ascribed to client
device 140 herein. For example, in some implementations,
client device 140 may take the form of a desktop computer,
laptop computer, tablet computer, smartphone, digital media
player, game platform, or a smart wearable device, such as
a smartwatch, for example.

With respect to display 148 of client device 140, display
148 may be physically integrated with client device 140 or
may be communicatively coupled to but physically separate
from client device 140. For example, where client device
140 is implemented as a smart TV, smartphone, laptop
computer, tablet computer, or smartwatch, display 148 may
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be integrated with client device 140. By contrast, where
client device 140 is implemented as a desktop computer or
game platform, display 148 may take the form of a monitor
separate from client device 140 in the form of a computer
tower or game console, respectively. Moreover, display 148
may be implemented as a liquid crystal display (LCD),
light-emitting diode (LED) display, organic light-emitting
diode (OLED) display, quantum dot (QD) display, or any
other suitable display screen that performs a physical trans-
formation of signals to light.

By way of overview of the runtime or inference time
performance of video processing system 100, it is noted that
processing hardware 104 of computing platform 102 may
receive input video sequence 138 having a first display
resolution, and may map, using trained ML model-based
video downsampler 112, input video sequence 138 to lower
resolution video sequence 152 having a second display
resolution lower than the first display resolution. Trained
ML model-based video downsampler 112 is trained using an
NN-based proxy video codec (not shown in FIG. 1) that has
been pre-trained to replicate the rate distortion characteris-
tics of video codec 114, in the form of a standard video
codec.

Due to that training of trained ML model-based video
downsampler 112, the downsampling of input video
sequence 138 performed by ML model-based video down-
sampler 112 results in lower resolution video sequence 152
being substantially optimized for processing by video codec
114. Processing hardware 140 may then transform, using
video codec 114, lower resolution video sequence 152 into
decoded bitstream 146, and may output decoded bitstream
146. For example, as shown in FIG. 1, in some implemen-
tations, video processing system 100 may output decoded
bitstream 146 to client device 140, via communication
network 130 and network communication links 132, for
display to media content consumer 108 on display 148 as an
output video sequence corresponding to input video
sequence 138.

FIG. 2 shows a diagram of training pipeline system 210
for training trained ML model-based video downsampler
112, in FIG. 1, according to one implementation. As shown
in FIG. 2, training pipeline system 210 includes ML model-
based video downsampler 211, simulation module 220
including NN-based proxy video codec 222, upsampler 226,
and optimization block 260. Also shown in FIG. 2 are
training input video sequence 227, lower resolution video
sequence 250 downsampled from training input video
sequence 227, decoded proxy bitstream 224 output by
NN-based proxy video codec 222, and training output video
sequence 228 corresponding to training input video
sequence 227.

ML model-based video downsampler 211 corresponds in
general to trained ML model-based video downsampler 112,
in FIG. 1, prior to training of trained ML model-based video
downsampler 112 using training pipeline system 210. Con-
sequently, ML model-based video downsampler 211 may
share any of the architectural characteristics attributed to
trained ML model-based video downsampler 112 by the
present disclosure, and vice versa. In addition, simulation
module 220, in FIG. 2, corresponds in general to simulation
module 120, in FIG. 1. Consequently, simulation module
120 may share any of the characteristics attributed to simu-
lation module 220 by the present disclosure, and vice versa.
That is to say, simulation module 120 may include features
corresponding respectively to one or more of NN-based
proxy video codec 222, upsampler 226, and optimization
block 260.
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Thus, training pipeline system 210 includes ML model-
based video downsampler 211 configured to receive training
input video sequence 227 having a first display resolution,
and to map training input video sequence 227 to lower
resolution video sequence 252 having a second display
resolution lower than the first display resolution. In addition,
training pipeline system 210 also includes NN-based proxy
codec 222 configured to transform lower resolution video
sequence 250 into decoded proxy bitstream 224, as well as
upsampler 226 configured to receive decoded proxy bit-
stream 224 and produce output training video sequence 228
corresponding to input training video sequence 227 and
having a display resolution higher than the second display
resolution.

Referring to training pipeline system 210, given a high-
resolution input video sequence having L frames:

YV, = {7:/"}[11 (Equation 1)

and a target downsampling scale 0<s<1, trained ML model-
based video downsampler 112, herein symbolized by “D ”
performs the operation that produces the downsampled
version:

Vzr:{j: g P (Equation 2)
Thus:
V[rz]/(D rsS)- (Equation 3)

Trained ML model-based video downsampler D can be
implemented using different learning strategies. For
instance, a possible instantiation of D an include a feature
extraction module, followed by a downsampling module and
another filtering or refinement module at the end that pre-
dicts either the downsampled result, the residual to a fixed
downsampling, or kernels that allow sampling of the desired
lower resolution result. To this end. FIG. 3 shows four
alternative implementations of ML model-based video
downsampler architectures suitable for adoption by ML
model-based video downsampler 211 or trained ML model-
based video downsampler 112 that use convolutional neural
networks (CNNs) to realize downsampling of features
extracted from the convolutional layers in different ways.

For example, referring to FIG. 3, ML model-based video
downsampler architecture 312a uses strided convolutions,
while ML model-based video downsampler architecture
312p features resampling with traditional filters such as
linear, bicubic, or Lanczos filters, for example. ML model-
based video downsampler architecture 312¢ is similar to ML
model-based video downsampler architecture 3125 but addi-
tionally uses accurate subpixel offsets and scale information
as extra inputs into the convolutional layers. ML model-
based video downsampler architecture 3124 is designed to
predict subpixel-aware kernels that can then be applied to
the original V ,, to generate V' ,,. Given the nature of strided
convolutions, ML model-based video downsampler archi-
tecture 312a supports only integer downsampling or down-
scaling factors, whereas ML model-based video downsam-
pler architectures 312b, 312¢, and 312d can also
advantageously support arbitrary scaling factors. Thus, in
various implementations, trained ML model-based video
downsampler 112 may include a CNN. Moreover, in some
implementations, trained ML model-based video downsam-
pler 112 may advantageously be configured to support
arbitrary, i.e., non-integer as well as integer, scaling factors.
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For video based downsampling, the temporal correlation
between the frames is also considered, and perceptually
correct loss functions are employed, as described in greater
detail below. However, it is readily understood that when
L=1 trained ML model-based video downsampler 112
reduces to the case of an image-only downsampler that
operates on single frame inputs. With L.>1, the downsampler
input is a sequence of video frames and exemplary training
pipeline system 210 in FIG. 2 may utilize two-dimensional
(2D) or three-dimensional (3D) convolutions, thereby taking
account of the temporal frame sequence information during
downsampling.

NN-Based Proxy Video Codec 222:

One challenge when end-to-end training ML model-based
video downsampler 211 is that current compression stan-
dards are based on complex heuristics decisions and thus,
are non-differentiable. To address and overcome this limi-
tation, the present application discloses a novel and inven-
tive knowledge distillation approach based on NN-based
proxy video codec 222, herein symbolized by P . NN-based
proxy video codec 222 is pre-trained with data generated
from a specific video codec of a specific standard (e.g.,
H.264, HEVC/H.265. MPEG-4, or AV1) to predict the
rate-distortion characteristics of the specific standard video
codec in a differentiable way. That is to say, NN-based proxy
video codec 222 is pre-trained to replicate the rate distortion
characteristics of the standard video codec, which may be
unique to that specific standard video codec. Moreover.
NN-based proxy video codec 222 is advantageously differ-
entiable.

During pre-training, the learning objective of NN-based
proxy video codec 222, P, is to learn to predict the artefacts
that a standard video codec would produce. P receives a

video V and outputs both the distorted video ¥ and its

estimated rate R (V) according to a specific codec. Rather
than training only for a specific target rate. NN-based proxy
video codec 222 can be conditioned on additional encoding
parameters, including target bit rate, for example, in order to
predict distortions for a variety of different settings. NN-
based proxy video codec 222 can predict either the final
frame and distortion, or only the distortion itself. As noted
above. NN-based proxy video codec 222 may be pre-trained
offline and may be used in training pipeline system 210 for
training of ML model-based video downsampler 211. Impor-
tantly, according to the codec rate distortion compensation
solution disclosed by the present application, the effects of
compression are included in the loss function used to train
NN-based proxy video codec 222 in order to enable NN-
based proxy video codec 222 to replicate the rate distortion
characteristics of a standard codec. It is noted that during
inference, i.e., at runtime, real video codec 114 is used in
combination with trained ML model-based vide downsam-
pler 112 to produce a backward-compatible compressed
bitstream of V,,.

Loss Functions:

The choice of the loss function is very important, espe-
cially in a constrained setting where only the downsampling
operation is optimized while the upsampling is fixed. In
particular, it can be insightful to consider the following
example: assume fixed upscaling on client device 140, in
FIG. 1, is performed using nearest neighbor/box filter tech-
niques for interpolation. In this case, independent of the
downsampling technique used, the output generated on
display 148 will appear pixelated, and an optimal downscale
with regards to L, loss is given by averaging/box filtering.
The specific downsampler architecture would also not mat-
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8

ter as long as it can compute an average, while improve-
ments could only be produced by the loss function. Thus, to
achieve more perceptually correct downsampling results, it
is necessary to optimize towards a loss function that better
represents human vision.

However, because different losses might best represent
different features of the human visual system, the solution
disclosed herein adopts an objective function that combines
multiple different perceptual loss functions while also con-
sidering rate as follows:

LRV ez o LV, UV i) (Equation 4)

Here, the weightings are a partition of unity (Zw,=1) and the

L, are different perceptual losses, such as L,, L., losses
based on peak signal-to-Noise ratio (PSNR), structural simi-
larity index measure (SSIM), learned perceptual image
patch similarity (LPIPS) metric, deep image structure and
texture similarity (DISTS) metric, or even generative adver-
sarial network-based (GAN-based) losses. R (V,,) is the
estimated rate of lower resolution video sequence 250
accordingly to P .

Thus, optimization block 260 of training pipeline system
210 may train ML model-based video downsampler 211
using training input video sequence 227, training output
video sequence 228, and an objective function based on the
estimated rate of lower resolution video sequence 250 and
multiple perceptual loss functions. Moreover, in some
implementations, as specifically shown by Equation 4
above, the objective function used to train ML model-based
video downsampler 211 to provide trained ML model-based
video downsampler 212 includes the estimated rate of lower
resolution video sequence 250 in combination with a
weighted sum of the multiple perceptual loss functions.

It is noted that U symbolizes upsampler 226 that
upsamples lower resolution video sequence 250 to training
output video sequence 228 having a display resolution
greater than lower resolution video sequence 250, and which
may have a display resolution substantially matching the
display resolution of training input video sequence 227. It is
further noted that in various implementations, upsampler
226 may be implemented as a fixed upsampler, or as an ML
model-based learned upsampler. Moreover, in implementa-
tions in which upsampler 226 takes the form of an ML
model-based upsampler, ML, model-based upsampler 226
and ML model-based video downsampler 211 may be
trained concurrently.

Temporal Coherence:

As noted above, when [>1, the input/output of trained
ML model-based video downsampler 112 is a sequence of
frames, which can be jointly considered in the objective
function of Equation 4. Such an approach advantageously
enables the enforcement of temporal stability on lower
resolution video sequence 152 provided as an output of ML,
model-based video downsampler 112. As an example, the
sequence of frames can be considered together to optimize
temporal profiles, which favors temporally coherent down-
scaling results.

The functionality of training pipeline system 210 will be
further described by reference to FIG. 4. FIG. 4 shows
flowchart 470 presenting an exemplary method for use by
video processing system 100 to train ML model-based video
downsampler 211, according to one implementation. With
respect to the method outlined in FIG. 4, it is noted that
certain details and features have been left out of flowchart
470 in order not to obscure the discussion of the inventive
features in the present application.



US 11,765,360 B2

9

Referring now to FIG. 4 in combination with FIG. 2,
flowchart 470 may begin with providing, to ML model-
based video downsampler 211, an input video sequence (i.e.,
training input video sequence 227) having a first display
resolution (action 471). Further referring to FIG. 1, training
input video sequence 227 may be provided to ML model-
based video downsampler 211 in action 471 by processing
hardware 104 of computing platform 102.

Flowchart 470 also includes mapping, using ML model-
based video downsampler 211, training input video
sequence 227 to lower resolution video sequence 250 having
a second display resolution lower than the first display
resolution of training input video sequence 227 (action 472).
Action 472 effectively maps a high resolution video
sequence to a low resolution video sequence, and is per-
formed by ML model-based video downsampler 211 under
the control of processing hardware 104 of computing plat-
form 102.

Flowchart 470 further includes transforming, using NN-
based proxy video codec 222, lower resolution video
sequence 250 into decoded proxy bitstream 224 (action
473). As noted above. NN-based proxy video codec 224 is
pre-trained to replicate the rate distortion characteristics of
video codec 114. Action 473 may be performed by process-
ing hardware 104 of computing platform 102, using NN-
based proxy video codec 222 of simulation module 220.

Flowchart 470 further includes producing, using upsam-
pler 226 receiving decoded proxy bitstream 224, an output
video sequence (i.e., training output video sequence 228)
corresponding to training input video sequence 227 and
having a display resolution higher than the second display
resolution, i.e., higher than the display resolution of lower
resolution video sequence 250 (action 474). In some imple-
mentations, the display resolution of training output video
sequence 228 may be substantially the same display reso-
Iution as the first display resolution of training input video
sequence 227. However, in other implementations, the dis-
play resolution of training output video sequence 228, while
greater than the second display resolution of lower resolu-
tion video sequence 240, may be lower than the first display
resolution of training input video sequence 227. Action 474
may be performed by processing hardware 104 of comput-
ing platform 102, using upsampler 226 of simulation module
220.

Flowchart 470 further includes training ML model-based
video downsampler 211 using training input video sequence
227, training output video sequence 228, and an objective
function based on an estimated rate of the lower resolution
video sequence and a plurality of perceptual loss functions
(action 475). Action 475 may be performed using optimi-
zation block 260 of simulation module 220, under the
control of processing hardware 104 of computing platform
102, in the manner described above by reference to Equation
4.

As noted above, the objective function expressed as
Equation 4 includes the estimated rate of lower resolution
video sequence 250 in combination with a weighted sum of
multiple perceptual loss functions. In some implementa-
tions, the training of ML, model-based video downsampler
211 may be further based on the respective weighting factors
(w,) applied to each perceptual loss function. Those weight-
ing factors may be computed based on an initial optimiza-
tion of the objective function expressed by Equation 4, may
be selected by an administrator of training pipeline system
210, or may include both computed weighting factors and
administrator selected weighting factors. In some implemen-
tations, the method outlined by flowchart 470 may further
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include providing those weighting factors as another input to
ML model-based video downsampler 211 and training ML
model-based downsampler 211 further using those weight-
ing factor inputs. Thus, in some implementations, ML
model-based video downsampler 211 is further configured to
receive the weighting factors included in the weighted sum
of the multiple perceptual loss functions included in Equa-
tion 4.

With respect to the method outlined by flowchart 470 and
described above, it is noted that, in some implementations,
actions 471, 472, 473, 474, and 475 may be performed in an
automated process from which human participation may be
omitted.

FIG. 5A shows a diagram depicting an exemplary condi-
tional downsampling network implemented by video pro-
cessing system 100 of FIG. 1, according to one aspect of the
present concepts. As shown in FIG. 5A, conditional down-
sampling network 500A includes trained ML model-based
video downsampler 512, video codec 514, and simulation
module 520A including upsampler 526 and optimization
block 560. Also shown in FIG. 5A are sample 540 of input
video sequence 138 to video processing system 100, lower
resolution sample 552 downsampled from sample 540,
decoded bitstream 554 A output by video codec 514, output
sample 556A corresponding to input sample 540, and
weighting factors 558.

Trained ML model-based video downsampler 512, video
codec 514, and simulation module 520 A correspond respec-
tively in general to trained ML model-based video down-
sampler 112, video codec 114, and simulation module 120,
in FIG. 1. Consequently, trained ML model-based video
downsampler 512, video codec 514, and simulation module
520A may share any of the characteristics attributed to
respective trained ML model-based video downsampler 112,
video codec 114, and simulation module 120 by the present
disclosure, and vice versa. In addition, upsampler 526 cor-
responds in general to upsampler 226, in FIG. 2, and may
share any of the characteristics attributed to that correspond-
ing feature above. That is to say, upsampler 526 may be
implemented as a fixed upsampler, or as an ML model-based
learned upsampler. Furthermore, weighting factors 558 cor-
respond to the weighting factors applied to each of the
perceptual loss functions included in Equation 4, which may
be computed based on an initial optimization of the objec-
tive function of Equation 4, may be selected by an admin-
istrator of video processing system 100, or may include both
computed weighting factors and administrator selected
weighting factors.

Referring to FIG. 5B, FIG. 5B shows a diagram depicting
an exemplary conditional downsampling network imple-
mented by video processing system 100 of FIG. 1, according
to another aspect of the present concepts. As shown in FIG.
5B, conditional downsampling network S500B includes
trained ML model-based video downsampler 512, and simu-
lation module 520B including NN-based proxy video codec
522, upsampler 526, and optimization block 560. Also
shown in FIG. 5B are sample 540 of input video sequence
138 to video processing system 100, lower resolution
sample 552 downsampled from sample 540, decoded bit-
stream 554B output by proxy video codec 522, output
sample 556B corresponding to input sample 540, and
weighting factors 558.

It is noted that any features identified in FIG. 5B by
reference numbers identical to reference numbers used in
FIG. 5A correspond respectively to those previously iden-
tified features and may share any of the characteristics
attributed to them above. Thus, trained ML model-based
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video downsampler 512, video codec 514, and simulation
module 520A correspond respectively in general to trained
ML model-based video downsampler 112, video codec 114,
and simulation module 120, in FIG. 1, while weighting
factors 558 correspond to the weighting factors applied to
each of the perceptual loss functions included in Equation 4.
Moreover. NN-based proxy video codec 522 corresponds in
general to NN-based proxy video codec 222, in FIG. 2, and
may share any of the characteristics attributed to that cor-
responding feature above. That is to say, NN-based proxy
video codec 522 may be configured to replicate the rate
distortion characteristics of video codec 114/514.

As shown by FIGS. 5A and 5B, in various implementa-
tions, simulation module 120/520A or 120/520B may
include upsampler 526 or both NN-based proxy video codec
522 and upsampler 526.

With respect to conditional downsampling networks
500A and 500B, it is noted that those networks are trained
to interpolate between loss functions and enable an admin-
istrator of video processing system 100 to control the degree
of detail included in the downsampled video. In such a case,
as shown in FIGS. 5A and 5B, trained ML model-based
video downsampler 512 may also receive weighting factors
558. That is to say, in the present implementation, the
downsampling algorithm employed by ML model-based
video downsampler 512 is a function of weighting factors
558 as well as of V,,,. and s:

D(V3,5,00))

To work properly in this conditional implementation,
trained ML model-based video downsampler 512 should see
a wide range of different loss weighting factors, e.g., ran-
domly sampled loss weighting factors, during training. Con-
ditional downsampling networks trained with random loss
weighting factors are able to successfully interpolate
between the perceptual loss functions during inference
through human administrator controlled parameters. As will
be discussed by reference to some of the specializations
described below, the same parametric approach can also be
used to have a single network trained for different upsam-
plers, different video codecs, different quantization param-
eters, and the like.

In some implementations, it may be advantageous or
desirable for trained ML, model-based video downsampler
112/512 of video processing system 100 to respond adap-
tively to the type of content included in input video sequence
138. Thus, in some implementations, before input video
sequence 138 is mapped to lower resolution video sequence
152 by trained ML, model-based video downsampler 112/
512, processing hardware 104 may extract sample 540 of
input video sequence 138, and may map, using trained ML
model-based video downsampler 112/512, sample 540 to
lower resolution sample 552. Processing hardware 104 may
further, either using video codec 114/514 as shown in FIG.
5A, or using proxy video codec 522 as shown in FIG. 5B,
transform lower resolution sample 552 into decoded bit-
stream 554 A or 554B, and predict, using upsampler 526 and
decoded sample bitstream 554A or 554B, output sample
556A or 556B corresponding to extracted sample 540.
Processing hardware 104 may then modify, based on pre-
dicted output sample 556 A or 556B, one or more parameters
of trained ML model-based video downsampler 112/512,
thereby advantageously rendering trained ML, model-based
video downsampler 112/512 content adaptive.

In addition to the perceptually-optimized downsampling
framework discussed above, there are a number of special-
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izations and extensions that the present novel and inventive
approach supports, including:

Image-only downsampling: As noted above, as a specific
use case, the present solution also enables perceptually-
optimized downsampling for image codecs, when using an
image only proxy codec and L=1.

Single-image/video downsampling: As a specific use
case, trained ML model-based video downsampler 112/512
can be further optimized on a per-content basis by training
a different network for each of different types of content.

Identity proxy codec: By using an identity proxy, percep-
tually-optimized downsampling can be supported without
requiring the codec in training pipeline system 210.

Multiple output resolutions: The present solution can be
easily adapted to support multiple output resolutions, which
for instance may match those required by streaming ser-
vices.

Optimal downsampling for learned super-resolution: As
noted above, referring to FIG. 2, in some implementations,
upsampler 226 can be a learned super-resolution upsampler.
In that case, the super-resolution upsampler can also be
end-to-end trained with ML model-based video downsam-
pler 211.

Multiple quality levels and upsamplers: The framework of
the present solution is flexible. On the one hand, it is
possible to optimize downsampling for a specific codec
setting and upsampler. Alternatively, it is also possible to
train for a number of different codec settings and upsampling
algorithms to achieve a single downsampling that is com-
patible with multiple different kinds of upsamplers and
codec settings.

Parametric upsampling: Similar to the conditional down-
sampling discussed above, it is also possible to extend the
approach disclosed in the present application to support
multiple upsampling kernels.

Parametric codec: It is also possible to train a single
downsampler and a single proxy codec network that is
conditioned on different standard codecs.

Chroma Subsampling: To avoid unnecessary conversions
and overhead, the video processing solution disclosed herein
network can also operate on yuv420p or other content with
chroma subsampling directly.

Pre-processing: Besides downsampling, there might be
other preprocessing tasks that it would be beneficial to
optimize. Note that if the downsampling factor=1, the pres-
ent solution optimizes for mitigating compression artifacts.

Thus, the present application discloses systems and meth-
ods for training and utilizing a machine learning model-
based codec rate distortion compensating downsampler that
overcome the drawbacks and deficiencies in the art. The
present solution advances the state-of-the-art in several
ways. For example, in contrast to non-learned techniques,
the present solution utilizes a data-driven approach to iden-
tify an optimal downsampling based on multiple perceptual
loss functions. In contrast to existing learned approaches,
none of which consider the codec during training, the
present solution uses a proxy video codec pre-trained to
replicate the rate distortion characteristics of a standard
video codec. Compared to existing learned methods, the
perceptually-optimized downsampler disclosed herein
advantageously 1) supports more perceptual loss functions
(e.g., LPIPS, DISTS, and temporal loss), 2) can provide
subpixel-position-aware convolutions, 3) integrates a codec
in the training loop, and 4) supports system administrator
controllable parameters that enable fine-grained control on
the basis of content type.



US 11,765,360 B2

13

Moreover, the pre-trained proxy codec utilized in the
present solution differs significantly from existing deep-
learning based codecs, which generate artifacts that are very
different from the ones produced by standard codecs. Thus,
because the present solution utilizes a proxy codec pre-
trained to reproduce the output of traditional codecs, the
approach disclosed herein is advantageously better able to
compensate for the distortions that are produced by such
standard codecs.

From the above description it is manifest that various
techniques can be used for implementing the concepts
described in the present application without departing from
the scope of those concepts. Moreover, while the concepts
have been described with specific reference to certain imple-
mentations, a person of ordinary skill in the art would
recognize that changes can be made in form and detail
without departing from the scope of those concepts. As such,
the described implementations are to be considered in all
respects as illustrative and not restrictive. It should also be
understood that the present application is not limited to the
particular implementations described herein, but many rear-
rangements, modifications, and substitutions are possible
without departing from the scope of the present disclosure.

What is claimed is:
1. A system comprising:
(a) a machine learning (ML) model-based video down-
sampler configured to:
receive an input video sequence having a first display
resolution; and

map the input video sequence to a lower resolution
video sequence having a second display resolution
lower than the first display resolution;

(b) a neural network-based (NN-based) proxy video codec
configured to transform the lower resolution video
sequence into a decoded proxy bitstream, wherein the
NN-based proxy video codec is pre-trained to replicate
a rate distortion characteristic of a standard video
codec; and

(c) an upsampler configured to produce an output video
sequence using the decoded proxy bitstream.

2. The system of claim 1, wherein producing the output

video sequence comprises:

receiving the decoded proxy bitstream; and

producing an output video sequence corresponding to the
input video sequence and having a display resolution
higher than the second display resolution.

3. The system of claim 1, wherein the NN-based proxy

video codec is differentiable.

4. The system of claim 1, wherein the upsampler com-
prises an ML model-based upsampler.

5. The system of claim 4, wherein the ML, model-based
upsampler and the ML, model-based video downsampler are
trained concurrently.

6. A system of comprising:

(a) a machine learning (ML) model-based video down-

sampler configured to:

receive an input video sequence having a first display
resolution; and

map the input video sequence to a lower resolution
video sequence having a second display resolution
lower than the first display resolution;

(b) a neural network-based (NN-based) proxy video codec
configured to transform the lower resolution video
sequence into a decoded proxy bitstream; and

(c) an upsampler configured to produce an output video
sequence using the decoded proxy bitstream
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wherein the ML model-based video downsampler is
trained using the input video sequence, the output video
sequence, and an objective function based on an esti-
mated rate of the lower resolution video sequence and
a plurality of perceptual loss functions.

7. The system of claim 6, wherein the objective function
comprises the estimated rate of the lower resolution video
sequence in combination with a weighted sum of the plu-
rality of perceptual loss functions.

8. The system of claim 7, wherein the ML model-based
video downsampler is further configured to receive a plu-
rality of weighting factors included in the weighted sum of
the plurality of perceptual loss functions, and wherein the
ML model-based video downsampler is trained further using
the plurality of weighting factors.

9. The system of claim 6, wherein the NN-based proxy
video codec is pre-trained to replicate a rate distortion
characteristic of a standard video codec.

10. A method for training a machine learning (ML)
model-based video downsampler, the method comprising:

providing, to the ML model-based video downsampler, an
input video sequence having a first display resolution;

mapping, using the ML, model-based video downsampler,
the input video sequence to a lower resolution video
sequence having a second display resolution lower than
the first display resolution;

transforming, using a neural network-based (NN-based)
proxy video codec, the lower resolution video sequence
into a decoded proxy bitstream;

producing, using an upsampler receiving the decoded
proxy bitstream, an output video sequence correspond-
ing to the input video sequence and having a display
resolution higher than the second display resolution;
and

training the ML model-based video downsampler using
the input video sequence, the output video sequence,
and an objective function based on an estimated rate of
the lower resolution video sequence and a plurality of
perceptual loss functions.

11. The method of claim 10, wherein the NN-based proxy
video codec is pre-trained to replicate a rate distortion
characteristic of a standard video codec.

12. The method of claim 10, wherein the NN-based proxy
video codec is differentiable.

13. The method of claim 10, wherein the upsampler
comprises an ML model-based upsampler.

14. The method of claim 13, further comprising training
the ML model-based upsampler and the ML model-based
video downsampler concurrently.

15. The method of claim 10, wherein the objective func-
tion comprises the estimated rate of the lower resolution
video sequence in combination with a weighted sum of the
plurality of perceptual loss functions.

16. The method of claim 15, further comprising providing
aplurality of weighting factors included in the weighted sum
of the plurality of perceptual loss functions to the ML
model-based video downsampler, wherein training the ML
model-based video downsampler is performed further using
the plurality of weighting factors.

17. A video processing system comprising:

a processing hardware and a system memory storing a
video codec and a trained ML model-based video
downsampler that has been trained using a neural
network-based (NN-based) proxy video codec config-
ured to replicate a rate distortion characteristic of the
video codec;
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the processing hardware configured to:
receive an input video sequence having a first display
resolution;
map, using the trained ML model-based video down-
sampler, the input video sequence to a lower reso-
lution video sequence having a second display reso-
lution lower than the first display resolution;
transform, using the video codec, the lower resolution
video sequence into a decoded bitstream; and
output the decoded bitstream.
18. The video processing system of claim 17, wherein the
trained ML model-based video downsampler is configured
to support arbitrary scaling factors.
19. The video processing system of claim 17, wherein the
NN-based proxy video codec is differentiable.
20. A video processing system comprising:
a simulation module including a neural network-based
(NN-based) proxy video codec; and

a processing hardware and a system memory storing a
video codec and a trained ML model-based video
downsampler that has been trained using the NN-based
proxy video codec;

the processing hardware configured to:

receive an input video sequence having a first display
resolution;

map, using the trained ML model-based video down-
sampler, the input video sequence to a lower reso-
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lution video sequence having a second display reso-

lution lower than the first display resolution;
transform, using the video codec, the lower resolution

video sequence into a decoded bitstream; and
output the decoded bitstream.

21. The video processing system of claim 20, wherein the
simulation module further includes an upsampler, and
wherein the processing hardware is further configured to:

before the input video sequence is mapped to the lower

resolution video sequence:

extract a content sample of the input video sequence;

map, using the trained ML, model-based video down-
sampler, the content sample to a lower resolution
sample;

transform, using one of the video codec or the NN-
based proxy video codec, the lower resolution
sample into a decoded sample bitstream;

predict, using the upsampler and the decoded sample
bitstream, an output sample corresponding to the
content sample; and

modify, based on the predicted output sample, one or
more parameters of the trained ML model-based
video downsampler, thereby rendering the trained
ML model-based video downsampler content adap-
tive.
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