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Systems and methods automatically generate contours on an
illustrated object for performing an animation. Contour lines
are generated on the surface of the object according to
criteria related to the shape of the surface of the object.
Points of the contour lines that are occluded from a virtual
camera are identified. The occluded points are removed to
generate visible lines. The visible lines are extruded to
define a three-dimensional volume defining contours of the
object. The object itself, along with the three-dimensional
volume, are illuminated and rendered. The parameters defin-
ing the opacity and color of the contour may differ from
corresponding parameters of the rest of the object, so that the
contours stand out and define portions of the object. The
contours are useful in contexts such as defining areas of an
object that is fuzzy or cloudy in appearance, as well as
creating certain artistic effects.
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CONTOUR LINES FOR VOLUMETRIC
OBJECTS

BACKGROUND

With the widespread availability of computers, computer
graphics artists and animators can rely upon computers to
assist in production process for creating animations and
computer-generated imagery (CGI). This may include using
computers to have physical models be represented by virtual
models in computer memory. Typically, two-dimensional
(2D) or three-dimensional (3D) computer-aided animation
combines 2D/3D models of objects and programmed move-
ment of one or more of the models. In 3D computer
animation, the first step is typically the object modeling
process. Virtual objects can be sculpted much like real clay
or plaster, working from general forms to specific details, for
example, with various sculpting tools. Models may then be
constructed, for example, out of geometrical vertices, faces,
and edges in a 3D coordinate system to represent the virtual
objects. These models can then be manipulated using com-
puters to, for example, simulate physics, design aesthetic
actions such as poses or other deformations, crate lighting,
coloring and paint, or the like, of characters or other ele-
ments of a computer animation display.

One core functional aspect of computer graphics is to
convert geometric and/or mathematical descriptions of
objects into images. This process is known in the industry as
“rendering.” For movies, other animated features, shorts,
and special effects, a user (e.g., a skilled computer graphics
artist) can specify the geometric or mathematical description
of objects such as characters, props, backgrounds, or the
like, as models to be used in the rendered image or animation
sequence. In some instances, the geometric description of an
object may include a number of animation control variables
(avars) and values for the avars. An animator may also pose
the objects within the image or sequence and specify
motions and positions of the objects over time to create an
animation.

As such, the production of CGI and computer-aided
animation may involve the extensive use of various com-
puter graphics techniques to produce a visually appealing
image from the geometric description of an object that may
be used to convey an essential element of a story or provide
a desired special effect. One of the challenges in creating
these visually appealing images can be the balancing of a
desire for a highly-detailed image of a character or other
object with the practical issues involved in allocating the
resources (both human and computational) required to pro-
duce those visually appealing images.

In particular, there are situations where objects are not
clearly defined. For example, certain objects have an opacity
level or texture that is similar to a cloud, where a surface is
not well-defined. In such instances, certain features of the
objects cannot always be seen clearly as a result of illumi-
nation being a statistical process (e.g., light scattering may
not always define an overlapping portion of an object
clearly). In other cases, an artist may wish to create an
artistic effect with line work on the object. Such line work
can be a laborious task to manually replicate as the object
moves in the animation process. Accordingly, there is a need
to overcome the drawbacks and deficiencies in the art.

BRIEF SUMMARY

The following portion of this disclosure presents a sim-
plified summary of one or more innovations, embodiments,
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and/or examples found within this disclosure for at least the
purpose of providing a basic understanding of the subject
matter. This summary does not attempt to provide an exten-
sive overview of any particular embodiment or example.
Additionally, this summary is not intended to identify key/
critical elements of an embodiment or example or to delin-
eate the scope of the subject matter of this disclosure.
Accordingly, one purpose of this summary may be to present
some innovations, embodiments, and/or examples found
within this disclosure in a simplified form as a prelude to a
more detailed description presented later.

Systems, devices, and methods are provided for rendering
volumetric objects with contours. As part of generating an
animated object, an artist can automatically generate con-
tours so as to define and provide a uniform look to the object,
even when the object does not have a well-defined surface
(e.g., like a cloud). Then, during animation, the rig of the
object can be used to automatically move the object, and the
contours can be automatically generated.

In some embodiments, a method for performing anima-
tion includes performing steps by a computer system includ-
ing receiving a polygonal mesh defining a surface of an
object. The computer system generates contour lines on the
surface of the object according to one or more criteria. The
computer system identifies one or more points of the contour
lines that are occluded from a virtual camera. The computer
system removes the one or more points from the contour
lines, thereby generating visible lines. The computer system
generates contour ribbons by extending the visible lines in a
first direction relative to the virtual camera. The computer
system extrudes faces of the contour ribbons in a second
direction relative to the virtual camera, thereby generating a
first three-dimensional volume. The computer system gen-
erates a texture for the surface of the object, the texture
defining a second three-dimensional volume that has a
density gradient. The computer system renders, using a
virtual light source, the object by ray tracing between the
virtual light source and the first three-dimensional volume
and by ray tracing between the virtual light source and the
second three-dimensional volume.

In some aspects, the contour lines are generated based on
a location of the virtual camera relative to the object. In
some aspects, the identifying a first point as occluded
includes shifting the first point from the surface by a
specified distance, tracing a ray from the first point to the
virtual camera, and identifying the first point as occluded
when the ray hits the surface of the object. In some aspects,
the removing the one or more points from the contour lines
generates contour fragments and the method further includes
projecting the contour fragments onto a focal plane of the
virtual camera and merging any contour fragments that are
within a specified distance of each other.

In some aspects, the first direction is lateral relative to the
virtual camera and the second direction defines a depth
relative to the virtual camera. In some aspects, method
includes tapering ends of the contour ribbons. In some
aspects, the one or more criteria include one or more of
identifying points on the surface of the object that have a
surface normal perpendicular to a viewing vector or identi-
fying points of self-intersection of the surface of the object.

In some aspects, the second three-dimensional volume is
fuzzy and the first three-dimensional volume defines a shape
of the second three-dimensional volume. In some aspects,
identifying the one or more points of the contour lines as
occluded includes identifying configured surface attributes.
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In some aspects, the object is a character and the first
three-dimensional volume defines body parts of the charac-
ter.

These and other embodiments of the invention are
described in detail below. For example, other embodiments
are directed to systems, devices, and computer readable
media associated with methods described herein.

A further understanding of the nature of and equivalents
to the subject matter of this disclosure (as well as any
inherent or express advantages and improvements provided)
should be realized in addition to the above section by
reference to the remaining portions of this disclosure, any
accompanying drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to reasonably describe and illustrate those inno-
vations, embodiments, and/or examples found within this
disclosure, reference may be made to one or more accom-
panying drawings. The additional details or examples used
to describe the one or more accompanying drawings should
not be considered as limitations to the scope of any of the
claimed inventions, any of the presently described embodi-
ments and/or examples, or the presently understood best
mode of any innovations presented within this disclosure.

FIG. 1 is an illustration of volumetric objects with con-
tours generated according to the techniques of the present
disclosure.

FIG. 2 is a simplified block diagram of a computer system
for creating computer graphics imagery (CGI) and com-
puter-aided animation that may implement or incorporate
various embodiments or techniques for generating volumet-
ric objects with contour volumes.

FIG. 3 is a simplified flowchart of a method for generating
contours according to some embodiments.

FIG. 4 is a simplified flowchart of a method for rendering
a volumetric object with contour volumes according to some
embodiments.

FIG. 5 depicts an image of an object with a polygon mesh
illustrating contour generation techniques according to cer-
tain embodiments.

FIGS. 6A and 6B are images illustrating contour line
generation according to some embodiments.

FIG. 7 is an image illustrating visible line generation
techniques according to some embodiments.

FIG. 8 is an image illustrating visible line modification
techniques according to some embodiments.

FIG. 9 is an image illustrating defragmented visible lines
according to some embodiments.

FIGS. 10A and 10B are images illustrating 2D ribbons
according to some embodiments.

FIG. 11 is an image illustrating extruded ribbons accord-
ing to some embodiments.

FIG. 12 is an image illustrating contour volumes accord-
ing to some embodiments.

FIG. 13 is an image illustrating halo ribbons according to
some embodiments.

FIG. 14 is an image illustrating a halo volume according
to some embodiments.

FIG. 15 is a simplified block diagram of a system for
creating computer graphics imagery (CGI) and computer-
aided animation that may implement or incorporate various
embodiments of the present invention.

FIG. 16 is a block diagram of a computer system or
information processing device that may incorporate an
embodiment, be incorporated into an embodiment, or be
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4

used to practice any of the innovations, embodiments, and/or
examples found within this disclosure.

DETAILED DESCRIPTION

Techniques are provided to automatically generate con-
tours on an object for performing an animation. Contour
lines can be automatically drawn according to certain cri-
teria. Points of the contour lines that are occluded from a
virtual camera can be identified. The occluded points can be
removed to generate visible lines. The visible lines can be
extruded to define a three-dimensional volume defining
contours of the object. The object itself, along with the
three-dimensional volume, can then be illuminated and
rendered. The contours are useful in contexts such as defin-
ing areas of an object (e.g., if the object is cloudy or not
opaque) and creating certain artistic effects (e.g., a halo
effect). During animation, the rig of the character can be
used to automatically move the character and the contour is
automatically generated.

1. Example Volumetric Objects with Contours

FIG. 1 is an image 100 depicting examples of volumetric
characters 102 and 104 with contours 106 and 108 generated
according to the techniques of the present disclosure. The
volumetric characters 102 and 104 are three-dimensional
(3D) animated objects. As shown in FIG. 1, the volumetric
characters 102 and 104 have a fuzzy appearance. Due to the
fuzzy nature of the objects, the borders of the volumetric
characters 102 and 104 are not clearly defined. For example,
overlapping regions blend together due to the way the
objects are rendered.

To better define the boundaries of different parts of the
volumetric characters 102 and 104, contours 106 can be
placed in strategic positions on or around the volumetric
characters 102 and 104. As shown, contours 106 are placed
around the hands of volumetric character 104, which helps
define the hands and arms when overlapping other parts of
the body. Contours 106 can also be placed around other
regions for aesthetic purposes. For example, in the volumet-
ric characters 102 and 104, contours 108 are placed around
the face to provide a halo effect. Thus, the contours 106 and
108 can help define an object and/or provide an artistic
effect.

II. Computer System for Contour Volume Modeling

FIG. 2 is a simplified block diagram of a computer system
200 for creating computer graphics imagery (CGI) and
computer-aided animation including objects defined by con-
tour volumes. As shown, the computer system 200 can
include a processor 202 configured to implement computer
program components, which can include a contour genera-
tion component 204, a contour modification component 206,
a ribbon generation component 208, a volume generation
component 210, and a rendering component 212. In some
implementations, the computer system 200 is part of, or
coupled to, systems for animating and rendering objects, as
shown in FIGS. 15 and 16. The computer system 200 and its
functions may accordingly be part of an overall animation
pipeline as further described below with respect to FIGS. 15
and 16.

The processor 202 may receive as input an object model
201. The object model 201 can include a polygonal mesh
defining a surface of an object. The object to be modeled can
be a human or animal character or another object such as a
car, a tree, a piece of furniture, etc. The object model 201
may be received from another component that is included in,
or communicatively coupled to, the computer system 200
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(e.g., the object modeling system 1530, as described in
further detail below with respect to FIG. 15).

The contour generation component 204 can be configured
to generate contours based on the received object model 201.
The contour generation component 204 generates contour
lines on the surface of the object according to one or more
criteria. The criteria can include tracing contours along a
surface based on a surface normal perpendicular to a view-
ing vector. Alternatively, or additionally, the criteria can
include generating contours based on identified points of
self-intersection of the surface of an object, or other suitable
techniques.

The contour modification component 206 can be config-
ured to modify contours as generated by the contour gen-
eration component 204. In some implementations, the con-
tour modification component 206 modifies a contour by
generating visible lines. Portions of the contour lines may or
may not be visible based on the positioning of different parts
of the object with respect to a virtual camera and light
source. For example, in FIG. 1, the hands on the volumetric
character 102 are not visible, and any contour lines on the
hand area of volumetric character 102 are not visible from
the virtual camera. The contour modification component 206
can identify visible lines by ray tracing from each point on
a visible line towards a camera. If the ray hits a surface of
the object or another object, then the point is flagged as
occluded.

The contour modification component 206 may further
modify the contour lines by defragmenting visible lines. In
generating visible lines, the contour lines may be broken into
contour fragments, as only certain portions of a given
contour line are flagged as visible. The visible lines are
defragmented based on a distance between the contour
fragments. The defragmentation process can include pro-
jecting fragments to the camera canvas and determining a
two-dimensional distance between the fragments. If the
two-dimensional distance is less than a threshold, then the
fragments are merged.

The ribbon generation component 208 can be configured
to generate a two-dimensional ribbon along visible lines.
Line segments can be duplicated along the defragmented
visible lines produced by the contour modification compo-
nent 206. The line segments can vary in length based on
configured tapering parameters. The ribbon generation com-
ponent 208 can connect the segments to create a flat ribbon.
The ribbons are two dimensional thickened lines that extend
through three-dimensional space. The ribbons may have
artistic tapering effects.

The volume generation component 210 can be configured
to generate three-dimensional volumes based on the two-
dimensional ribbons generated by the ribbon generation
component 208. The ribbons may be extruded based on
density and tapering values of the ribbons. The volume
generation component 210 may convert the extruded geom-
etry into a volumetric density field.

The rendering component 212 can be configured to render
a three-dimensional object with contour lines, according to
the present disclosure. The rendering component 212 is
configured to render or generate computer-generated
images. In some aspects, the rendering component 212 may
include, or be communicatively coupled to, the object ren-
dering system(s) 1570 described below with respect to FIG.
15. As described below with respect to the object rendering
system(s) 1570, a rendered image can be understood in
terms of a number of visible features such as shading (e.g.,
techniques relating to how the color and brightness of a
surface varies with lighting), texture-mapping (e.g., tech-
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niques relating to applying detail information to surfaces or
objects using maps), bump-mapping (e.g., techniques relat-
ing to simulating small-scale bumpiness on surfaces), fog-
ging/participating medium (e.g., techniques relating to how
light dims when passing through non-clear atmosphere or
air) shadows (e.g., techniques relating to effects of obstruct-
ing light), soft shadows (e.g., techniques relating to varying
darkness caused by partially obscured light sources), reflec-
tion (e.g., techniques relating to mirror-like or highly glossy
reflection), transparency or opacity (e.g., techniques relating
to sharp transmissions of light through solid objects), trans-
lucency (e.g., techniques relating to highly scattered trans-
missions of light through solid objects), refraction (e.g.,
techniques relating to bending of light associated with
transparency), diffraction (e.g., techniques relating to bend-
ing, spreading and interference of light passing by an object
or aperture that disrupts the ray), indirect illumination (e.g.,
techniques relating to surfaces illuminated by light reflected
off other surfaces, rather than directly from a light source,
also known as global illumination), caustics (e.g., a form of
indirect illumination with techniques relating to reflections
of light off a shiny object, or focusing of light through a
transparent object, to produce bright highlights on another
object), depth of field (e.g., techniques relating to how
objects appear blurry or out of focus when too far in front of
or behind the object in focus), motion blur (e.g., techniques
relating to how objects appear blurry due to high-speed
motion, or the motion of the camera), non-photorealistic
rendering (e.g., techniques relating to rendering of scenes in
an artistic style, intended to look like a painting or drawing),
or the like. Based on these rendering parameters, the object
is rendered using techniques such as ray tracing.

The rendering component 212 is configured to render an
object with contour lines. In some embodiments, the object
has some degree of transparency, translucency, and/or fog-
ging. The contour lines may have different levels of reflec-
tivity and transparency, to help define a translucent or foggy
object. The rendering component 212 may apply different
rendering parameters to the contour volumes and the rest of
the object to create this effect, as described herein.

III. Methods for Generating and Rendering Contour Vol-
umes

FIGS. 3 and 4 illustrate techniques for generating and
rendering contour volumes, according to certain embodi-
ments. FIG. 3 is a flowchart of a method for automatically
generating contour volumes. The parameters defining the
contour volumes are established automatically based on the
shape and position of an object to be rendered with respect
to the position of a virtual camera and light source(s). Once
the contour volumes are generated, an object can be ren-
dered. FIG. 4 is a flowchart of a method for rendering an
object with contour volumes. The parameters defining the
contour volumes established using the method of FIG. 3 are
used to render the contour volumes along with the object.

A. Generating a Contour Volume

FIG. 3 is a simplified flowchart of a method for generating
contour volumes according to some embodiments. The
method presented in FIG. 3 and described below is intended
to be illustrative and non-limiting. It is appreciated that the
processing steps may be performed in an order different
from that depicted in FIG. 3 and that not all the steps
depicted in FIG. 3 need be performed. In certain implemen-
tations, the method 300 may be implemented by a computer
system, such as the computer system 200 shown in FIG. 2
and/or those shown in FIGS. 15 and 16.

In some embodiments, the method 300 may be imple-
mented in one or more processing devices (e.g., a digital
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processor, an analog processor, a digital circuit designed to
process information, an analog circuit designed to process
information, a state machine, and/or other mechanisms for
electronically processing information). The one or more
processing devices may include one or more devices execut-
ing some or all of the operations of method 300 in response
to instructions stored electronically on an electronic storage
medium. The one or more processing devices may include
one or more devices configured through hardware, firmware,
and/or software to be specifically designed for execution of
one or more of the operations of method 300.

At step 302, the computer system receives a polygonal
mesh defining a surface of an object. In some embodiments,
the computer system 200 depicted in FIG. 2 receives the
polygonal mesh from a component coupled to the computer
system 200. For example, the object modeling system 1530
of FIG. 15 can generate the polygonal mesh and transmit the
polygonal mesh to the computer system 200. Polygons can
be used to model the objects and their motion. The polygonal
mesh generation process may involve techniques such as
non-uniform rational B-splines or NURBS, polygons and
subdivision surfaces (or SubDivs), that may be used to
describe the shape of the object. A single object may have
several different models that describe its shape.

In some implementations, the mesh is initialized by
generating a recursively generated B-spline surface, also
known as a Catmull-Clark mesh surface. (See Catmull, E.
and Clark, J., “Recursively Generated B-Spline Surfaces on
Arbitrary Topological Meshes,” Computer-Aided Design 10,
6 (1978)). The base mesh may then be subdivided into
polygons, such as triangles or quadrilaterials, and vertices of
the polygons are moved to their limit positions. (See Hal-
stead, M., Kass, M., and Derose, T., “Efficient, Fair Inter-
polation Using Catmull-Clark Surfaces, in Proc. SIG-
GRAPH, 35-44 (1993)).

At step 304, the computer system (e.g., the contour
generation component 204 depicted in FIG. 2) generates
contour lines on the surface of the object according to one
or more criteria. The contour lines may be generated on the
surface of the mesh, or the surface of the object itself. In the
following discussion, these terms are used interchangeably.

In some implementations, the contour lines are silhouette
contours and the criteria include whether a given point on
the surface of the mesh has a surface normal perpendicular
to a viewing vector. Such a geometry corresponds to a point
orthogonal to a virtual camera from which the viewing
vector may originate. In some aspects, a point p is a vertex
of the mesh. The computer system may identify vertices of
the mesh. As illustrated in FIG. 5, the computer system may

identify an outward surface normal 1 at the identified vertex
p. The outward surface normal points outwards from the
surface of the object. The computer system identifies a
camera center point ¢ corresponding to a virtual camera
location, as depicted in FIG. 5. The set of contour lines are
generated based on the location of the virtual camera relative

to the object. For example, a viewing vector V is identified

as v=c—p. The vector Vv points from the point p towards the
virtual camera center point c.

— . . — .
If the surface normal n is perpendicular to v for a given
point p, then that point p is selected as a point on a contour
line. The computer system may determine whether the

surface normal 1 is perpendicular to v by computing the

dot product of the vector Vv and the normal o, which
provides a measure of how aligned these two vectors are.
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When 1V is equal to zero, then 1 is normal to v. These
points at which the dot product is equal to zero represent
points at which the camera is orthogonal to the edge of the
object.

The computer system may identify this oV value at a
series of points on the surface of the object (e.g., at each
vertex on the mesh). Each vertex will then have an associ-
ated value. If the value is equal to zero, then the point is
selected for generating the contour line. This process may be
repeated for each vertex on the mesh, resulting in a set of
selected points. The computer system traces contour lines
along the surface of the object by connecting the selected
points with respective surface normal perpendiculars to the
respective viewing vectors. In other words, the system traces

the zero-level set of a function describing the dot product n-

V across the surface of the object. The resulting contour
lines separate regions of the object that are facing the camera
and regions of the object that are not facing the camera. In
other words, the contour lines divide regions that are and are
not visible to the camera.

Alternatively, or additionally, the contour lines are Bool-
ean curves and the criteria include identitying points at
which the surface of the object self-intersects. The computer
system may identify points at which the surface self-inter-
sects by computing a parametric expression for the surface
and solving an equation to identify the points of self-
intersection, as described in Pekerman et. al, “Self-Intersec-
tion Detection and Elimination in Freeform Curves and
Surfaces,” Computer Aided Design 40, 150-159 (2008).

The silhouette contours and Boolean curves may be used
individually or in combination to generate the contour lines.
Alternatively, or additionally, contour generation techniques
such as mesh contours, ray-tracing contours, or planar map
methods may be used. Contour generation techniques are
described in further detail in Benard et al., “Computing
Smooth Surface Contours with Accurate Topology,” ACM
Transactions on Graphics, Vol. 33, No. 2. (2014).

At step 306, the computer system (e.g., the contour
modification component 206 shown in FIG. 2) identifies
points of the contour lines that are occluded from a virtual
camera. The occluded points can be determined in several
different ways. In some implementations, the computing
system traces a ray from a point identified as lying on a
contour line at step 304. The ray is traced to a virtual camera.
The computer system traces a ray from the point identified
at step 304 to the virtual camera. The computer system
identifies the point as occluded if and when the ray hits the
surface of the object. For example, as shown in FIG. 7, point
704 is occluded, as the ray 706 hits a surface, whereas point
708 is not occluded, as the ray 710 does not hit a surface on
the way to the virtual camera. A point identified as occluded
may be flagged as an occluded point. On the other hand, if
the ray corresponding to a particular point proceeds unob-
structed to the virtual camera, then this point is considered
visible and will be part of a visible line.

In some aspects, each ray is traced from a point offset
from the surface of the object. The system shifts the point
identified at step 304 from the surface by a specified
distance. The specified distance may be some small amount,
so that the ray originates just off of the surface of the object.
The offset may be along the outer surface normal of the
object. The ray is then traced from this offset point to the
camera location, and the original point identified at step 304
is flagged as occluded if the ray hits the surface of the object.
By biasing the origin of the ray by an offset from the surface
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of the object, the computer system can avoid having the ray
hit the surface due to originating on the surface, and avoid
unwanted gaps in the resulting visible lines.

Alternatively, or additionally, identifying points of the
contour lines as occluded includes identifying configured
surface attributes. For example, an artist may configure
parameters establishing how high up an arm of a character
a contour line extends. Points may be flagged as occluded
based on surface attributes painted by an artist. These
parameters are then applied to occlude points corresponding
to the upper part of the arm above the configured level.

In some implementations, the occluded points can be
modified based on additional illumination sources. A virtual
spotlight is established. The flag values marking a particular
point as occluded are overwritten if the points are illumi-
nated by the virtual spotlight. For example, as shown in FIG.
8, points 808 and 810 are illuminated by virtual spotlights.
These points can have any flag for occlusion overwritten, so
that these points are included in the visible lines. In some
implementations, multiple virtual spotlights are used in this
process.

At step 308, the computer system (e.g., the contour
modification component 206 shown in FIG. 2) removes the
identified points from the contour lines, thereby generating
visible lines. For each point that is flagged at occluded at
step 306, the point is removed from the contour line. For
example, the dotted line including point 704 shown in FIG.
7 are marked as occluded and excluded from the contour
lines. Removing the one or more points from the contour
lines generates contour fragments. The contour lines can be
split into fragments formed only by points flagged as visible.
For example, in FIG. 7, small gaps 716 can be seen in the
visible lines 714, fragmenting the surrounding contour lines.

In some implementations, the contour fragments are
merged based on certain criteria. For example, the computer
system can project the contour fragments onto a focal plane
of the virtual camera. A two-dimensional distance between
the endpoints of the fragments is determined based on the
projection. This determined distance is compared to a speci-
fied distance, which may be user configured or automatically
selected. The suitable specified distance may vary depend-
ing on the size of the object and the desired appearance. The
computer system can merge any contour fragments that are
within the specified distance of each other. This process can
be used to ensure that, even if contour lines are separated in
three dimensions, the contour lines are not fragmented in
two dimensions. This improves the appearance of the con-
tours, particularly when the contours are tapered as
described below with respect to step 310.

At step 310, the computer system (e.g., the ribbon gen-
eration component 208 depicted in FIG. 2) generates con-
tour ribbons by extending the visible lines in a first direction
relative to the virtual camera. For example, the visible lines
are extended in a direction that is lateral relative to the
virtual camera. The computer system may duplicate a line
segment based on each point along the visible lines. The line
segment may be duplicated one or more times along the
camera plane (e.g., in a direction substantially lateral to the
virtual camera). The duplicated line segments are connected
to form a flat ribbon. The contour ribbons may be two-
dimensional, expanded versions of the visible lines gener-
ated at step 308.

In some implementations, the visible lines are duplicated
point-by-point. For each point in the visible line, the point is
copied, and the copy is placed in a position according to the
first direction. The size of the displacement may correspond
to a desired thickness for the ribbon. When repeated across
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the points in the visible line, this results in two lines. The two
lines are then connected to generate a ribbon. In some
implementations, each point is connected to a copied point
using a polygonal mesh, resulting in a mesh for the contour
ribbon.

In some embodiments, the computer system tapers ends
of the contour ribbons. The length of each of the contour
ribbons may be modified based on configured tapering
parameters. For example, an illustrator may configure that
the end of each contour ribbon, or some of the contour
ribbons, taper from the width of the ribbon to a point. A
desired falloff may be added along the width of the contour
line. Examples of tapered ribbons are shown in FIGS. 10A
and 10B.

At step 312, the computer system (e.g., the volume
generation component 210 depicted in FIG. 2) extrudes
faces of the contour ribbons in a second direction relative to
the virtual camera. The contour ribbons may, for example,
be extruded in a direction perpendicular to the direction in
which the contour lines were duplicated at step 310. For
example, the contour ribbon can be extruded in depth from
the camera. The contour ribbons generated at step 310 may
comprise a strip of polygonal mesh. This strip of polygonal
mesh is copied and duplicated at a different depth with
respect to the camera position. This results in a three-
dimensional volume defining the contours, an example of
which is illustrated in FIG. 11.

In some implementations, the contour ribbons are
extruded based on density and tapering values that are
configured by an artist. The extruded geometry may then be
converted into a volumetric density field. The result is a set
of volume contours, as illustrated in FIG. 12. These contours
can be rendered, along with the object, as described below
with respect to FIG. 4.

B. Rendering an Object with Contours

FIG. 4 is a simplified flowchart of a method for rendering
a volumetric object with contour volumes according to some
embodiments. The method presented in FIG. 4 and
described below is intended to be illustrative and non-
limiting. It is appreciated that the processing steps may be
performed in an order different from that depicted in FIG. 4
and that not all the steps depicted in FIG. 4 need be
performed. In certain implementations, the method 400 may
be implemented by a computer system, such as the computer
system 200 shown in FIG. 2 and/or those shown in FIGS. 15
and 16.

In some embodiments, the method depicted in method
400 may be implemented in one or more processing devices
(e.g., a digital processor, an analog processor, a digital
circuit designed to process information, an analog circuit
designed to process information, a state machine, and/or
other mechanisms for electronically processing informa-
tion). The one or more processing devices may include one
or more devices executing some or all of the operations of
method 400 in response to instructions stored electronically
on an electronic storage medium. The one or more process-
ing devices may include one or more devices configured
through hardware, firmware, and/or software to be specifi-
cally designed for execution of one or more of the operations
of method 400.

The method of FIG. 4 renders an object with contour
volumes according to both the three-dimensional contour
volume generated using the techniques of FI1G. 3 (referred to
as a first three-dimensional volume) and a volume corre-
sponding to the object itself (referred to as a second three-
dimensional volume).
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At step 402, the computer system (e.g., the rendering
component 212 depicted in FIG. 2) generates a texture for
the surface of the object. In some implementations, the
computer system generates or obtains a file that represents
the texture for the surface of the object (e.g., a bitmap). For
example, the texture may be smooth, fuzzy, furry, metallic,
and so forth. The computer system may then overlay the
texture onto the object (e.g., onto the surface mesh).

In some applications, the three-dimensional volume of the
object may further have a density that varies within the
object. In some aspects, a density parameter p of the
three-dimensional volume of the object is varying such that
the three-dimensional volume of the object has a density
gradient.

In some embodiments, another set of material parameters
is assigned to the first three-dimensional volume corre-
sponding to the contours. For example, the parameters
defining the second three-dimensional volume correspond to
a fuzzy or cloudy object, and the first three-dimensional
volume corresponding to the contours is relatively opaque,
so that the contours can define edges of the more foggy
object.

At step 404, the computer system (e.g., the rendering
component 212 depicted in FIG. 2) ray traces between a
virtual light source and the first three-dimensional volume.
The ray tracing process can include casting rays into a 3D
scene represented by data specifying the first three-dimen-
sional volume. The 3D scene may further include the second
three-dimensional volume and any other objects or scenery.
The rays can be cast into the 3D scene from pixels of an
image plane. For example, the rays can be cast from each
pixel or a subset of pixels on an image plane of an image of
the 3D scene to be rendered. It should be understood that the
number of rays that can be cast can vary. Typically, a larger
number of the rays can be cast if many objects are in the 3D
scene, and a smaller number of rays can be cast if few
objects are in the 3D scene. The rays cast can hit one or more
objects in the 3D scene either directly or indirectly on their
way back to one or more light sources. In one embodiment,
the ray tracing is performed by using Pixar Renderman®. In
that embodiment, the number of rays cast can be configured
by a user.

In the ray tracing process, each ray is followed from a
point in the first three-dimensional volume, and the system
tracks if and where the ray interacts with other points before
reaching the virtual light source. If the ray strikes an
established volume, or if the ray reflects or refracts between
multiple points in a volume, that data is represented in the
light and color assigned to that point (e.g., to a pixel in the
ultimate generated image). The system calculates a color of
the contour volume at each point for use in rendering the
contour volume. This ray tracing process establishes how to
illuminate the volume by identifying how light refracts and
reflects from the volume. Techniques for volumetric render-
ing are described in detail in Fong et al., “Production
Volume Rendering,” SIGGRAPH 2017.

At step 406, the computer system (e.g., the rendering
component 212 depicted in FIG. 2) ray traces between the
virtual light source and the second three-dimensional vol-
ume. The computer system ray traces to points in the
three-dimensional volume corresponding to the surface of
the object, as generated at step 402. This is performed in a
similar fashion as described above with respect to step 404.
Thus, both the contour volumes and the texture of the
character are used for illumination.

In some cases, the ray tracing on the first and second
three-dimensional volumes is performed substantially
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simultaneously. For example, a ray is projected, and the ray
hits the object volume first then the contour volume, or vice
versa. The ray may disperse within the object volume. Some
of the dispersed rays will leave the surface, while other
dispersed rays will go back into the second volume defining
the object, and other rays will hit the contour volumes and
then disperse from the contour volumes.

In some implementations, the second-three dimensional
volume is fuzzy. A fuzzy volume may have a blurry, soft
appearance, such that edges are not well-defined, particu-
larly in overlapping regions. The fuzzy appearance can be a
result of transparency, texture, variations in the density
gradient, and/or filters. Alternatively or additionally, the
fuzzy appearance can be created with a particle approach for
foggy objects, cloudy objects, or other types of volumetric
fluids such as water. (See, e.g., U.S. Pat. No. 10,282,885,
which is incorporated by reference). The second three-
dimensional volume defines the object. For example, as
shown in FIG. 1, the objects are fuzzy and the lines around
the hands define the shape of the object.

At step 408, the computer system renders the object using
the virtual light source. The computer system (e.g., the
rendering component 212 depicted in FIG. 2) renders the
object based on the ray tracing of steps 404 and 406. The
system renders the object, with the contour volumes, by
converting the color, shape and texture information deter-
mined during the ray tracing process into an image.

The methods 300 and 400 described above may be
repeated across multiple images which are animated. During
animation, the rig of the character can be used to automati-
cally move the character. For each animation frame, the
contour volumes are automatically generated. Thus, these
techniques can be used to automatically render contours for
an animation.

IV. Contour Rendering Pipeline

FIGS. 5-14 show examples illustrating various techniques
used in the contour rendering pipeline as described above
with respect to FIGS. 3 and 4. In section A, contour line
generation techniques are described with respect to the
examples shown in FIGS. 5-6B. In section B, techniques for
generating visible lines based on contour lines are described
with respect to the examples shown in FIGS. 7-9. In section
C, examples illustrating contour ribbon generation is
described, and in section D, an example illustrating contour
volume rendering is described. Section E describes one
application of contours for a halo effect as shown in FIGS.
13 and 14.

A. Contour Line Generation

FIGS. 5, 6A, and 6B are images illustrating contour line
generation according to some embodiments. As described
above with respect to step 304 of FIG. 3, contour lines can
be generated on the surface of an object using techniques
including silhouette contours and Boolean lines.

FIG. 5 depicts an image 500 of an object 502 with a
polygon mesh 504. As described above with respect to FIG.
3, one way to identify a contour line on the surface of the
object is by identifying a point p 502 with a surface normal

n 512 perpendicular to a vector vV 510 that is directed from
point p 502 on the surface of the object towards a virtual
camera ¢ 508. In some implementations, p 502 is at a vertex
506 of the mesh 504. Vertices 506 of the polygon mesh 504

are identified. The outward surface normal 1 512 to point p
501 is determined. A vector v 510 is identified, where the
vector v points in a direction from the point p 501 to a

camera location ¢ 508. If the normal vector n 512 is normal
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to the vector v 510, then point p 501 is selected for inclusion
in a contour line. Each of these selected points p 501
represent points of transition between surfaces of the object
502 that are visible to the camera 508 and surfaces of the
object 502 that are not visible to the camera 508.

FIG. 6A depicts an image of an object 600 showing
contour generation using silhouette contours 602. The sil-
houette contours 602 are traced along the surface of the
object 604 by connecting points with a surface normal
perpendicular to a viewing vector. As described above with
respect to FIG. 5 and step 304 of FIG. 3, in some imple-
mentations, the silhouette contours 602 are generated by
identifying a surface normal to the object at a particular
point, establishing a virtual camera, and computing the dot
product of the surface normal and a vector directed from the
point to the virtual camera. If the dot product is equal to zero,
e.g., the normal is perpendicular to the direction of the
virtual camera, then the contour includes that point. This will
result in contours 602 such as those depicted in FIG. 6,
which separate regions of the object facing towards and
away from the virtual camera.

FIG. 6B depicts an image of an object 650 showing
contour generation using Boolean curves 652. The Boolean
curves 652 are curves indicating where the surface 654 of
the object 650 self-intersects. On the surface of the object,
there may be points where the surface intersects itself. For
example, when two fingers move in an animation, one finger
may be slightly inside another finger. The system may
identify the boundaries of such surface intersections. As
described above with respect to step 304 of FIG. 3, in some
implementations, the contour lines are generated by identi-
fying such points of self-intersection, which may produce
contour lines in the form of Boolean curves 652 such as
those depicted in FIG. 6B.

B. Visible Line Generation and Modification

FIGS. 7 and 8 show examples illustrating techniques for
generating and modifying visible lines, according to some
embodiments. Visible line generation techniques are
described with respect to FIG. 7. Visible line modification
techniques are described with respect to FIG. 8.

FIG. 7 is an image 700 illustrating techniques for gener-
ating visible lines 714 according to some embodiments. As
described above with respect to step 306 of FIG. 3, visible
lines 714 can be identified based on a virtual camera position
C 702. For each point along the visible lines 714, a ray is
traced from the point (e.g., points 704 and 708) to the virtual
camera 702. If the ray intersects a surface of the object, then
the ray is flagged as occluded and will be excluded from the
visible lines 714. For example, for point 704, a correspond-
ing ray 706 will pass through the arm of the object. Thus, the
point 704 would not be visible from the camera C 702.
Accordingly, point 704 and other points along the dotted line
through point 704 are marked as occluded and not included
in the visible lines 714. On the other hand, the ray 710
extending from point 708 does not hit any portion of the
object, as point 708 is on the edge of the object. Thus, point
708 is not marked as occluded and is part of a visible line
714. Gaps 716 are present in the visible lines 714, which can
be artifacts of the ray tracing process and may be included
in the visible lines via further processing for more aestheti-
cally pleasing visible lines 714. Once the visible lines are
generated, in some implementations, the techniques
described with respect to FIGS. 8 and/or 9 may be used to
further modify or refine the visible lines.

FIG. 8 is an image 800 illustrating use of virtual spotlights
to modify visible lines according to some embodiments. As
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described above with respect to step 306 of FIG. 3, in some
implementations, the object is illuminated by one or more
virtual spotlights 804 to further refine what points are
included in a visible line. This can be achieved by overwrit-
ing the contour line visibility flags generated as described
above with respect to FIG. 7. Points on the contour lines 802
that are illuminated by the virtual spotlights 804 are marked
as visible. Such points include points 808 and 810 shown in
FIG. 8. In some implementations, even if these points are not
part of the original set of visible lines (e.g., the points are
flagged as occluded), these flags can be overwritten based on
illuminating the contour lines 802 using one or more addi-
tional virtual spotlights.

Alternatively, or additionally, the visible lines may be
modified using a defragmentation process to omit small
inadvertent gaps in the visible lines.

FIG. 9 is an image 900 illustrating defragmented visible
lines 904 according to some embodiments. Visible lines 904
are generated on surfaces of an object 902. The visible lines
904 are on parts of the object 902 that are visible and
illuminated, as determined based upon virtual cameras and
light sources. For example, as depicted in FIG. 7, certain
contour line portions are not visible from a virtual camera.
Moreover, as described above with respect to FIG. 3, a
defragmentation process may be performed to reduce gaps
in the visible lines. For example, starting with a somewhat
choppy visible line 714 as shown in FIG. 7, gaps 716 are
removed to produce defragmented visible lines 904 on an
object 902.

C. Contour Ribbon Generation

FIGS. 10A and 10B are images illustrating contour rib-
bons according to some embodiments. The image 1000
depicted FIG. 10A shows contour ribbons 1002 defining
areas of an object. The contour ribbons 1002 are two-
dimensional shapes corresponding to lines extended in a
particular direction. For example, the defragmented visible
lines 904 shown in FIG. 9 can be duplicated and jointed to
produce the contour ribbons 1002 shown in FIG. 10A.
Techniques for generating contour ribbons 1002 are
described in further detail above with respect to step 310 of
FIG. 3. In some implementations, the contour ribbons 1002
are stylized to include tapering ends 1004. FIG. 10B shows
a close-up view 1050 of contour ribbons 1052, where the
tapered ends 1054 and other features on the hands are shown
in more detail.

FIG. 11 is an image 1100 illustrating extruded contour
ribbons 1102 according to some embodiments. As described
above with respect to step 312 of FIG. 3, contour ribbons
such as those depicted in FIG. 10 can be extruded to generate
extruded contour ribbons 1102 such as those depicted in
FIG. 11. For example, the contour ribbons 1002 depicted in
FIG. 10 can be duplicated. The duplicated contour ribbon is
placed beside the original contour ribbon 1002, and the
contour ribbons can be connected to produce a three-
dimensional extruded contour ribbon 1102.

As shown in FIG. 11, the extruded contour ribbon 1102
now has an appreciable thickness, in contrast to the flat
contour ribbon 1002 of FIG. 10. The 2D contour ribbons
1002 can be converted into 3D extruded contour ribbons
1102 based on configured density and tapering values. The
extruded contour ribbon 1102 may be in the form of a
polygonal mesh. The extruded contour ribbons 1102 can
specify parameters for generating the final contour volumes
as shown in FIG. 12.

D. Contour Volume Rendering

FIG. 12 is an image 1200 illustrating contour volumes
1202 according to some embodiments. The contour volumes
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1202 can be generated using extruded contour ribbons 1102
such as those shown in FIG. 11. The contour volumes 1202
define a three-dimensional volume to be rendered according
to established parameters. These three-dimensional contour
volumes can be rendered along with another volume
describing an object, so that the contour volumes 1202
define portions of the object. For example, as shown in FIG.
1, the volumetric characters 102 and 104 are fuzzy objects
and body parts such as hands would not be well-defined
without the contours 106 to define their edges. While the
volumetric characters 102 and 104 are fuzzy objects, the
contours 106 have more of a well-defined look. Thus, the
contour volumes 1202 can be used to define regions of a
fuzzy, transparent, or cloudlike volume. Alternatively, or
additionally, contour volumes 1202 can be used for an
artistic effect, such as the halo effect depicted in FIGS. 13
and 14.

E. Halo Examples

One example application of an artistic application of
contours is creating a halo effect. This can be achieved by
generating halo ribbons as depicted in FIG. 13 which are
used to render halo volumes as shown in FIG. 14.

FIG. 13 is an image 1300 illustrating halo ribbons 1304 on
an object 1302 according to some embodiments. The halo
ribbons 1304 are a type of contour ribbons that can be used
to generate contour volumes, such as those depicted in FIG.
14, that provide a stylistic effect. As described above with
respect to FIG. 3, contour ribbons can be generated based on
a contour line such as a defragmented visible line. Halo
ribbons 1304 are a specific example of such contour ribbons
that are placed around the head of an object to produce an
artistic halo effect. In this example, the halo ribbons 1304 are
placed around the head of the object to generate volumetric
contours around the head as shown in FIG. 14. As described
with respect to FIG. 3, ribbons extruded from a contour line
can be used to generate a final contour volume.

FIG. 14 is an image 1400 illustrating halo volumes 1404
according to some embodiments. The halo volumes 1404 are
one example of contour volumes that create a halo effect. In
this example, the halo volumes 1404 are positioned around
the sides of the head of the object 1402 relative to the virtual
camera position to produce a halo effect for stylistic pur-
poses. The halo volumes 1404 can be generated from halo
ribbons 1304 as depicted in FIG. 13.

As described above with respect to FIG. 3, an extruded
contour ribbon can be generated by extruding a contour
ribbon in 3D. This 3D extruded contour ribbon can then be
used to render a contour volume along with the object itself
as described above with respect to FIG. 4. A halo volume
1404 is one application of such a rendered contour, where
the contour is rendered around the head of the object to
appear like a halo. In some implementations, the halo
volumes 1404 have additional and more vibrant colors than
the rest of the characters
V. Computer Systems

FIG. 15 is a simplified block diagram of system 1500 for
creating computer graphics imagery (CGI) and computer-
aided animation that may implement or incorporate various
embodiments. In this example, system 1500 can include one
or more design computers 1510, object library 1520, one or
more object modeling systems 1530, one or more object
articulation systems 1540, one or more object animation
systems 1550, one or more object simulation systems 1560,
and one or more object rendering systems 1570. Any of the
systems 1530-1570 may be invoked by or used directly by
a user of the one or more design computers 1510 and/or
automatically invoked by or used by one or more processes
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associated with the one or more design computers 1510. Any
of the elements of system 1500 can include hardware and/or
software elements configured for specific functions.

The one or more design computers 1510 can include
hardware and software elements configured for designing
CGI and assisting with computer-aided animation. Each of
the one or more design computers 1510 may be embodied as
a single computing device or a set of one or more computing
devices. Some examples of computing devices are PCs,
laptops, workstations, mainframes, cluster computing sys-
tem, grid computing systems, cloud computing systems,
embedded devices, computer graphics devices, gaming
devices and consoles, consumer electronic devices having
programmable processors, or the like. The one or more
design computers 1510 may be used at various stages of a
production process (e.g., pre-production, designing, creat-
ing, editing, simulating, animating, rendering, post-produc-
tion, etc.) to produce images, image sequences, motion
pictures, video, audio, or associated effects related to CGI
and animation.

In one example, a user of the one or more design
computers 1510 acting as a modeler may employ one or
more systems or tools to design, create, or modify objects
within a computer-generated scene. The modeler may use
modeling software to sculpt and refine a neutral 3D model
to fit predefined aesthetic needs of one or more character
designers. The modeler may design and maintain a modeling
topology conducive to a storyboarded range of deforma-
tions. In another example, a user of the one or more design
computers 1510 acting as an articulator may employ one or
more systems or tools to design, create, or modify controls
or animation variables (avars) of models. In general, rigging
is a process of giving an object, such as a character model,
controls for movement, therein “articulating” its ranges of
motion. The articulator may work closely with one or more
animators in rig building to provide and refine an articula-
tion of the full range of expressions and body movement
needed to support a character’s acting range in an animation.
In a further example, a user of design computer 1510 acting
as an animator may employ one or more systems or tools to
specify motion and position of one or more objects over time
to produce an animation.

Object library 1520 can include elements configured for
storing and accessing information related to objects used by
the one or more design computers 1510 during the various
stages of a production process to produce CGI and anima-
tion. Some examples of object library 1520 can include a
file, a database, or other storage devices and mechanisms.
Object library 1520 may be locally accessible to the one or
more design computers 1510 or hosted by one or more
external computer systems.

Some examples of information stored in object library
1520 can include an object itself, metadata, object geometry,
object topology, rigging, control data, animation data, ani-
mation cues, simulation data, texture data, lighting data,
shader code, or the like. An object stored in object library
1520 can include any entity that has an n-dimensional (e.g.,
2D or 3D) surface geometry. The shape of the object can
include a set of points or locations in space (e.g., object
space) that make up the object’s surface. Topology of an
object can include the connectivity of the surface of the
object (e.g., the genus or number of holes in an object) or the
vertex/edge/face connectivity of an object.

The one or more object modeling systems 1530 can
include hardware and/or software elements configured for
modeling one or more objects. Modeling can include the
creating, sculpting, and editing of an object. In various
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embodiments, the one or more object modeling systems
1530 may be configured to generated a model to include a
description of the shape of an object. The one or more object
modeling systems 1530 can be configured to facilitate the
creation and/or editing of features, such as non-uniform
rational B-splines or NURBS, polygons and subdivision
surfaces (or SubDivs), that may be used to describe the
shape of an object. In general, polygons are a widely used
model medium due to their relative stability and function-
ality. Polygons can also act as the bridge between NURBS
and SubDivs. NURBS are used mainly for their ready-
smooth appearance and generally respond well to deforma-
tions. SubDivs are a combination of both NURBS and
polygons representing a smooth surface via the specification
of a coarser piecewise linear polygon mesh. A single object
may have several different models that describe its shape.

The one or more object modeling systems 1530 may
further generate model data (e.g., 2D and 3D model data) for
use by other elements of system 1500 or that can be stored
in object library 1520. The one or more object modeling
systems 1530 may be configured to allow a user to associate
additional information, metadata, color, lighting, rigging,
controls, or the like, with all or a portion of the generated
model data.

The one or more object articulation systems 1540 can
include hardware and/or software elements configured to
articulating one or more computer-generated objects. Articu-
lation can include the building or creation of rigs, the rigging
of an object, and the editing of rigging. In various embodi-
ments, the one or more articulation systems 1540 can be
configured to enable the specification of rigging for an
object, such as for internal skeletal structures or eternal
features, and to define how input motion deforms the object.
One technique is called “skeletal animation,” in which a
character can be represented in at least two parts: a surface
representation used to draw the character (called the skin)
and a hierarchical set of bones used for animation (called the
skeleton).

The one or more object articulation systems 1540 may
further generate articulation data (e.g., data associated with
controls or animations variables) for use by other elements
of system 1500 or that can be stored in object library 1520.
The one or more object articulation systems 1540 may be
configured to allow a user to associate additional informa-
tion, metadata, color, lighting, rigging, controls, or the like,
with all or a portion of the generated articulation data.

The one or more object animation systems 1550 can
include hardware and/or software elements configured for
animating one or more computer-generated objects. Anima-
tion can include the specification of motion and position of
an object over time. The one or more object animation
systems 1550 may be invoked by or used directly by a user
of the one or more design computers 1510 and/or automati-
cally invoked by or used by one or more processes associ-
ated with the one or more design computers 1510.

In various embodiments, the one or more animation
systems 1550 may be configured to enable users to manipu-
late controls or animation variables or utilized character
rigging to specify one or more key frames of animation
sequence. The one or more animation systems 1550 generate
intermediary frames based on the one or more key frames.
In some embodiments, the one or more animation systems
1550 may be configured to enable users to specify animation
cues, paths, or the like according to one or more predefined
sequences. The one or more animation systems 1550 gen-
erate frames of the animation based on the animation cues or
paths. In further embodiments, the one or more animation
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systems 1550 may be configured to enable users to define
animations using one or more animation languages, morphs,
deformations, or the like.

The one or more object animations systems 1550 may
further generate animation data (e.g., inputs associated with
controls or animations variables) for use by other elements
of system 1500 or that can be stored in object library 1520.
The one or more object animations systems 1550 may be
configured to allow a user to associate additional informa-
tion, metadata, color, lighting, rigging, controls, or the like,
with all or a portion of the generated animation data.

The one or more object simulation systems 1560 can
include hardware and/or software elements configured for
simulating one or more computer-generated objects. Simu-
lation can include determining motion and position of an
object over time in response to one or more simulated forces
or conditions. The one or more object simulation systems
1560 may be invoked by or used directly by a user of the one
or more design computers 1510 and/or automatically
invoked by or used by one or more processes associated with
the one or more design computers 1510.

In various embodiments, the one or more object simula-
tion systems 1560 may be configured to enables users to
create, define, or edit simulation engines, such as a physics
engine or physics processing unit (PPU/GPGPU) using one
or more physically-based numerical techniques. In general,
a physics engine can include a computer program that
simulates one or more physics models (e.g., a Newtonian
physics model), using variables such as mass, velocity,
friction, wind resistance, or the like. The physics engine may
simulate and predict effects under different conditions that
would approximate what happens to an object according to
the physics model. The one or more object simulation
systems 1560 may be used to simulate the behavior of
objects, such as hair, fur, and cloth, in response to a physics
model and/or animation of one or more characters and
objects within a computer-generated scene.

The one or more object simulation systems 1560 may
further generate simulation data (e.g., motion and position of
an object over time) for use by other elements of system
1500 or that can be stored in object library 1520. The
generated simulation data may be combined with or used in
addition to animation data generated by the one or more
object animation systems 1550. The one or more object
simulation systems 1560 may be configured to allow a user
to associate additional information, metadata, color, light-
ing, rigging, controls, or the like, with all or a portion of the
generated simulation data.

The one or more object rendering systems 1570 can
include hardware and/or software element configured for
“rendering” or generating one or more images of one or
more computer-generated objects. “Rendering” can include
generating an image from a model based on information
such as geometry, viewpoint, texture, lighting, and shading
information. The one or more object rendering systems 1570
may be invoked by or used directly by a user of the one or
more design computers 1510 and/or automatically invoked
by or used by one or more processes associated with the one
or more design computers 1510. One example of a software
program embodied as the one or more object rendering
systems 1570 can include PhotoRealistic RenderMan, or
PRMan, produced by Pixar Animations Studios of Emery-
ville, Calif.

In various embodiments, the one or more object rendering
systems 1570 can be configured to render one or more
objects to produce one or more computer-generated images
or a set of images over time that provide an animation. The
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one or more object rendering systems 1570 may generate
digital images or raster graphics images.

In various embodiments, a rendered image can be under-
stood in terms of a number of visible features. Some
examples of visible features that may be considered by the
one or more object rendering systems 1570 may include
shading (e.g., techniques relating to how the color and
brightness of a surface varies with lighting), texture-map-
ping (e.g., techniques relating to applying detail information
to surfaces or objects using maps), bump-mapping (e.g.,
techniques relating to simulating small-scale bumpiness on
surfaces), fogging/participating medium (e.g., techniques
relating to how light dims when passing through non-clear
atmosphere or air) shadows (e.g., techniques relating to
effects of obstructing light), soft shadows (e.g., techniques
relating to varying darkness caused by partially obscured
light sources), reflection (e.g., techniques relating to mirror-
like or highly glossy reflection), transparency or opacity
(e.g., techniques relating to sharp transmissions of light
through solid objects), translucency (e.g., techniques relat-
ing to highly scattered transmissions of light through solid
objects), refraction (e.g., techniques relating to bending of
light associated with transparency), diffraction (e.g., tech-
niques relating to bending, spreading and interference of
light passing by an object or aperture that disrupts the ray),
indirect illumination (e.g., techniques relating to surfaces
illuminated by light reflected off other surfaces, rather than
directly from a light source, also known as global illumina-
tion), caustics (e.g., a form of indirect illumination with
techniques relating to reflections of light off a shiny object,
or focusing of light through a transparent object, to produce
bright highlights on another object), depth of field (e.g.,
techniques relating to how objects appear blurry or out of
focus when too far in front of or behind the object in focus),
motion blur (e.g., techniques relating to how objects appear
blurry due to high-speed motion, or the motion of the
camera), non-photorealistic rendering (e.g., techniques relat-
ing to rendering of scenes in an artistic style, intended to
look like a painting or drawing), or the like.

The one or more object rendering systems 1570 may
further render images (e.g., motion and position of an object
over time) for use by other elements of system 1500 or that
can be stored in object library 1520. The one or more object
rendering systems 1570 may be configured to allow a user
to associate additional information or metadata with all or a
portion of the rendered image.

FIG. 16 is a block diagram of computer system 1600. FIG.
16 is merely illustrative. In some embodiments, a computer
system includes a single computer apparatus, where the
subsystems can be the components of the computer appa-
ratus. In other embodiments, a computer system can include
multiple computer apparatuses, each being a subsystem,
with internal components. Computer system 1600 and any
of its components or subsystems can include hardware
and/or software elements configured for performing meth-
ods described herein.

Computer system 1600 may include familiar computer
components, such as one or more one or more data proces-
sors or central processing units (CPUs) 1605, one or more
graphics processors or graphical processing units (GPUs)
1610, memory subsystem 1615, storage subsystem 1620,
one or more input/output (I/O) interfaces 1625, communi-
cations interface 1630, or the like. Computer system 1600
can include system bus 1635 interconnecting the above
components and providing functionality, such connectivity
and inter-device communication
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The one or more data processors or central processing
units (CPUs) 1605 can execute logic or program code or for
providing application-specific functionality. Some examples
of CPU(s) 1605 can include one or more microprocessors
(e.g., single core and multi-core) or micro-controllers, one or
more field-gate programmable arrays (FPGAs), and appli-
cation-specific integrated circuits (ASICs). As user herein, a
processor includes a multi-core processor on a same inte-
grated chip, or multiple processing units on a single circuit
board or networked.

The one or more graphics processor or graphical process-
ing units (GPUs) 1610 can execute logic or program code
associated with graphics or for providing graphics-specific
functionality. GPUs 1610 may include any conventional
graphics processing unit, such as those provided by conven-
tional video cards. In various embodiments, GPUs 1610 may
include one or more vector or parallel processing units.
These GPUs may be user programmable, and include hard-
ware elements for encoding/decoding specific types of data
(e.g., video data) or for accelerating 2D or 3D drawing
operations, texturing operations, shading operations, or the
like. The one or more graphics processors or graphical
processing units (GPUs) 1610 may include any number of
registers, logic units, arithmetic units, caches, memory inter-
faces, or the like.

Memory subsystem 1615 can store information, e.g.,
using machine-readable articles, information storage
devices, or computer-readable storage media. Some
examples can include random access memories (RAM),
read-only-memories (ROMS), volatile memories, non-vola-
tile memories, and other semiconductor memories. Memory
subsystem 1615 can include data and program code 1640.

Storage subsystem 1620 can also store information using
machine-readable articles, information storage devices, or
computer-readable storage media. Storage subsystem 1620
may store information using storage media 1645. Some
examples of storage media 1645 used by storage subsystem
1620 can include floppy disks, hard disks, optical storage
media such as CD-ROMS, DVDs and bar codes, removable
storage devices, networked storage devices, or the like. In
some embodiments, all or part of data and program code
1640 may be stored using storage subsystem 1620.

The one or more input/output (I/O) interfaces 1625 can
perform 1/O operations. One or more input devices 1650
and/or one or more output devices 1655 may be communi-
catively coupled to the one or more I/O interfaces 1625. The
one or more input devices 1650 can receive information
from one or more sources for computer system 1600. Some
examples of the one or more input devices 1650 may include
a computer mouse, a trackball, a track pad, a joystick, a
wireless remote, a drawing tablet, a voice command system,
an eye tracking system, external storage systems, a monitor
appropriately configured as a touch screen, a communica-
tions interface appropriately configured as a transceiver, or
the like. In various embodiments, the one or more input
devices 1650 may allow a user of computer system 1600 to
interact with one or more non-graphical or graphical user
interfaces to enter a comment, select objects, icons, text,
user interface widgets, or other user interface elements that
appear on a monitor/display device via a command, a click
of a button, or the like.

The one or more output devices 1655 can output infor-
mation to one or more destinations for computer system
1600. Some examples of the one or more output devices
1655 can include a printer, a fax, a feedback device for a
mouse or joystick, external storage systems, a monitor or
other display device, a communications interface appropri-
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ately configured as a transceiver, or the like. The one or more
output devices 1655 may allow a user of computer system
1600 to view objects, icons, text, user interface widgets, or
other user interface elements. A display device or monitor
may be used with computer system 1600 and can include
hardware and/or software elements configured for display-
ing information.

Communications interface 1630 can perform communi-
cations operations, including sending and receiving data.
Some examples of communications interface 1630 may
include a network communications interface (e.g. Ethernet,
Wi-Fi, etc.). For example, communications interface 1630
may be coupled to communications network/external bus
1660, such as a computer network, a USB hub, or the like.
A computer system can include a plurality of the same
components or subsystems, e.g., connected together by
communications interface 1630 or by an internal interface.
In some embodiments, computer systems, subsystem, or
apparatuses can communicate over a network. In such
instances, one computer can be considered a client and
another computer a server, where each can be part of a same
computer system. A client and a server can each include
multiple systems, subsystems, or components.

Computer system 1600 may also include one or more
applications (e.g., software components or functions) to be
executed by a processor to execute, perform, or otherwise
implement techniques disclosed herein. These applications
may be embodied as data and program code 1640. Addi-
tionally, computer programs, executable computer code,
human-readable source code, shader code, rendering
engines, or the like, and data, such as image files, models
including geometrical descriptions of objects, ordered geo-
metric descriptions of objects, procedural descriptions of
models, scene descriptor files, or the like, may be stored in
memory subsystem 1615 and/or storage subsystem 1620.

Such programs may also be encoded and transmitted
using carrier signals adapted for transmission via wired,
optical, and/or wireless networks conforming to a variety of
protocols, including the Internet. As such, a computer read-
able medium according to an embodiment of the present
invention may be created using a data signal encoded with
such programs. Computer readable media encoded with the
program code may be packaged with a compatible device or
provided separately from other devices (e.g., via Internet
download). Any such computer readable medium may reside
on or within a single computer product (e.g. a hard drive, a
CD, or an entire computer system), and may be present on
or within different computer products within a system or
network. A computer system may include a monitor, printer,
or other suitable display for providing any of the results
mentioned herein to a user.

Any of the methods described herein may be totally or
partially performed with a computer system including one or
more processors, which can be configured to perform the
steps. Thus, embodiments can be directed to computer
systems configured to perform the steps of any of the
methods described herein, potentially with different compo-
nents performing a respective steps or a respective group of
steps. Although presented as numbered steps, steps of meth-
ods herein can be performed at a same time or in a different
order. Additionally, portions of these steps may be used with
portions of other steps from other methods. Also, all or
portions of a step may be optional. Additionally, any of the
steps of any of the methods can be performed with modules,
circuits, or other means for performing these steps.

The specific details of particular embodiments may be
combined in any suitable manner without departing from the
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spirit and scope of embodiments of the invention. However,
other embodiments of the invention may be directed to
specific embodiments relating to each individual aspect, or
specific combinations of these individual aspects.

The above description of exemplary embodiments of the
invention has been presented for the purposes of illustration
and description. It is not intended to be exhaustive or to limit
the invention to the precise form described, and many
modifications and variations are possible in light of the
teaching above. The embodiments were chosen and
described in order to best explain the principles of the
invention and its practical applications to thereby enable
others skilled in the art to best utilize the invention in various
embodiments and with various modifications as are suited to
the particular use contemplated.

A recitation of “a”, “an” or “the” is intended to mean “one
or more” unless specifically indicated to the contrary.

All patents, patent applications, publications, and descrip-
tions mentioned here are incorporated by reference in their
entirety for all purposes. None is admitted to be prior art.

What is claimed is:

1. A method for performing animation, the method com-
prising performing, by a computer system:

receiving a polygonal mesh defining a surface of an

object;

generating contour lines on the surface of the object

according to one or more criteria;

identifying one or more points of the contour lines that are

occluded from a virtual camera;

removing the one or more points from the contour lines,

thereby generating visible lines;
generating contour ribbons by extending the visible lines
in a first direction relative to the virtual camera;

extruding faces of the contour ribbons in a second direc-
tion relative to the virtual camera, thereby generating a
first three-dimensional volume;

generating a texture for the surface of the object, the

texture defining a second three-dimensional volume
that has a density gradient; and

rendering, using a virtual light source, the object by ray

tracing between the virtual light source and the first
three-dimensional volume and by ray tracing between
the virtual light source and the second three-dimen-
sional volume.

2. The method of claim 1, wherein the contour lines are
generated based on a location of the virtual camera relative
to the object.

3. The method of claim 1, wherein identifying a first point
as occluded includes:

shifting the first point from the surface by a specified

distance;

tracing a ray from the first point to the virtual camera; and

identifying the first point as occluded when the ray hits the

surface of the object.

4. The method of claim 1, wherein removing the one or
more points from the contour lines generates contour frag-
ments, the method further comprising:

projecting the contour fragments onto a focal plane of the

virtual camera; and

merging any contour fragments that are within a specified

distance of each other.

5. The method of claim 1, wherein the first direction is
lateral relative to the virtual camera, and wherein the second
direction defines a depth relative to the virtual camera.

6. The method of claim 1, further comprising tapering
ends of the contour ribbons.
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7. The method of claim 1, wherein generating the contour
lines includes one or more of:

identifying points on the surface of the object that have a

surface normal perpendicular to a viewing vector; and
identifying points of self-intersection of the surface of the
object.

8. The method of claim 1, wherein:

the second three-dimensional volume is fuzzy; and

the first three-dimensional volume defines a shape of the

second three-dimensional volume.

9. The method of claim 1, wherein identifying the one or
more points of the contour lines as occluded includes
identifying configured surface attributes.

10. The method of claim 1, wherein the object is a
character and wherein the first three-dimensional volume
defines body parts of the character.

11. A system for performing animation, the system com-
prising one or more processors configured to:

receive a polygonal mesh defining a surface of an object;

generate contour lines on the surface of the object accord-

ing to one or more criteria;

identify one or more points of the contour lines that are

occluded from a virtual camera;

remove the one or more points from the contour lines,

thereby generating visible lines;
generate contour ribbons by extending the visible lines in
a first direction relative to the virtual camera;

extrude faces of the contour ribbons in a second direction
relative to the virtual camera, thereby generating a first
three-dimensional volume;

generate a texture for the surface of the object, the texture

defining a second three-dimensional volume that has a
density gradient; and

render, using a virtual light source, the object by ray

tracing between the virtual light source and the first
three-dimensional volume and by ray tracing between
the virtual light source and the second three-dimen-
sional volume.
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12. The system of claim 11, wherein the contour lines are
generated based on a location of the virtual camera relative
to the object.

13. The system of claim 11, wherein identifying a first
point as occluded includes:

shifting the first point from the surface by a specified

distance;

tracing a ray from the first point to the virtual camera; and

identifying the first point as occluded when the ray hits the

surface of the object.

14. The system of claim 11, wherein removing the one or
more points from the contour lines generates contour frag-
ments, the processors further configured to:

project the contour fragments onto a focal plane of the

virtual camera; and

merge any contour fragments that are within a specified

distance of each other.

15. The system of claim 11, wherein the first direction is
lateral relative to the virtual camera, and wherein the second
direction defines a depth relative to the virtual camera.

16. The system of claim 11, wherein the processors are
further configured to taper ends of the contour ribbons.

17. The system of claim 11, wherein generating the
contour lines includes one or more of:

identifying points on the surface of the object that have a

surface normal perpendicular to a viewing vector; and
identifying points of self-intersection of the surface of the
object.

18. The system of claim 11, wherein:

the second three-dimensional volume is fuzzy; and

the first three-dimensional volume defines a shape of the

second three-dimensional volume.

19. The system of claim 11, wherein identifying the one
or more points of the contour lines as occluded includes
identifying configured surface attributes.

20. The system of claim 11, wherein the object is a
character and wherein the first three-dimensional volume
defines body parts of the character.
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