Vorrichtung zur Kühlung der Kühlfüssigkeit für Kraftmaschinen und Kompressoren.

Patentirt im Deutschen Reiche vom 13. September 1892 ab.

Nachstehend beschriebenes Verfahren bezieht sich auf den Umlauf und die Kühlung des Kühlwassers bei Kraftmaschinen und Kompressoren, sowie auf die Zuführung und den Umlauf von Kühlwasser bei Schiffsanlagen.

Es besteht in dem wesentlichen in der Einführung des zu kühlenden und in Umlauf zu bringenden Wassers in eine centrifugengeneigte, gegebenenfalls als Schwingrad ausgebildete, sich drehende Scheibe der Kraftmaschine oder des Kompressors, und in der Entziehung seiner Wärme durch den von der Scheibe erzeugten Wind theils unmittelbar durch Verdunsten und Verdampfen, theils mittelbar durch die Flächen der Scheibe selbst, und in dem Wiederauffangen des Wassers durch ein Fangrohr, sowie in der Ausnutzung der dem Wasser durch die Umdrehung gegebenen Geschwindigkeit zum Hochdrücken desselben in bekannter Art zwecks Umlaufs und energetischer Kühlung des Wassers bei einfachster Einrichtung und kleiner Oberfläche.

Weitere Einrichtungen bestehen in dem schiffsbürmigen Anlöcher des Fangrohres zwecks Vermeidung des Spritzens beim Auffangen des Wassers, und endlich in der Abschaltung der auf dem Wasserring sich bildenden heißen Luft- oder Dampfschicht durch eine oder mehrere, nahe bis auf die Wasseroberfläche reichende Schaufeln oder Fangröhren zwecks Verstärkung der Kühlung.

Fig. 1 und 2 beiliegender Zeichnung zeigen den Grundgedanken der Einrichtung; A ist die centrifugengeneigte ausgebildete Scheibe, B das Rohr zur Einführung des Wassers, C das Auffangrohr.

Wird die Scheibe A nach der Pfeilrichtung in Umlauf versetzt und durch Rohr B Wasser eingeführt, so nimmt dieses fast sofort die Geschwindigkeit des Ringes A an; das Wasser kann dann neben der Einstromung oder an einer anderen Stelle des Umlanges durch das Fangrohr C aufgefangen werden, und wird je nach der erhaltenen Geschwindigkeit mehr oder minder im Rohr e aufsteigen.

Fig. 3 und 4 stellen eine Gas- oder Petroleumkraftmaschine dar, bei welcher das eben Beschriebene angewendet ist. A ist die centrifugengeneigte und hier als Schwingrad ausgebildete Scheibe, B das Einlaufrohr, C das Auffang- und c das Steigrohr, durch welches das Wasser nach Ingangsetzung der Kraftmaschine unter Druck nach dem Mantelraum des Zylinders E geleitet wird; dort kühlts es, d. h. es nimmt Wärme auf, geht durch Rohr e in den Behälter F und von dort durch Rohr B wieder zur Scheibe A zurück. Der von letzterer erzeugte Wind entzieht dem Wasser die aufgenommene Wärme theils unmittelbar in Dunst- oder Dampfform, theils mittelbar durch Abkühlung der vom Wasser erwärmten Scheibe, so daß es abgekühlt bei weiterem Kreislauf in der angeführten Weise Verwendung findet.

Man erreicht auf diese Weise eine sehr vollkommene Kühlung und einen schnellen Umlauf des Kühlwassers bei kleiner Oberfläche und einfachster Einrichtung.

Vor dem Abstellen der Kraftmaschine wird die Leitung vom Behälter F nach der Scheibe A durch den Hahn H geschlossen, so daß kein Wasser mehr nachfließen kann und das Schwingrad bezw. die Scheibe nach wenigen Umdrehun-
gen entfeert sein wird, die Maschine somit ohne Wasserverlust abgestellt werden kann.

Fig. 5 zeigt die Zuführung des Kühlwassers bei einer Schiffsmaschine. An Stelle des Behälters \(F \) der eben beschriebenen Einrichtung tritt hier das Außenwasser \(F \). Nach Ingangsetzung der Maschine und Öffnen des Hahnes \(H \) tritt das Wasser durch Rohr \(B \) in die Scheibe \(A \), wird hier in Umdrehung versetzt, durch Rohr \(C \) aufgefangen, durch Rohr \(c \) nach dem Mantelraum des Cylinders \(E \) und von da durch Rohr \(e \) ins Außenwasser zurückgeleitet; eine Abkühlung und Wiederverwendung des Wassers ist wegen der zur Verfügung stehenden großen Menge von Kühlwasser nicht nötig, weshalb hier die Schwunzscheibe lediglich zur Erreichung des Wasserumlaufes Verwendung findet.

Fig. 6a und 6b zeigen den am Fangrohr \(C \) in der Drehrichtung der Scheibe angebrachten schlauchförmigen Ausläufer \(i \), welcher dazu dient, beim Auffangen des Wassers das Spritzen hinter dem Rohr zu vermeiden.

Eine Verstärkung der Kühlung des Wassers wird erreicht, wenn durch eine oder mehrere Schaufeln oder Röhren \(K \), Fig. 7 und 8, die auf der Wasseroberfläche sich bildende heiße Luft- oder Dampfschicht abgeschält bezw. abgefangen und event. durch Rohrleitung fortgeleitet wird.

Zur Verstärkung des Luftzuges können an oder in der Schwunzscheibe noch einige Windflügel angebracht und die Scheibe selbst zur Erzielung einer größeren Oberfläche entsprechend gestaltet werden.

Die so eingerichtete Scheibe kann bei Bremsdynamometern als Brems scheibe verwendet werden. Das in die Scheibe geleitete Wasser nimmt die durch das Bremsen erzeugte Wärme auf, d. h. die Scheibe wird gekühlt, während durch den erzeugten Luftzug das Wasser wieder zum Teil abgekühlt wird; dasselbe wird dann aufgefangen und in einem Behälter weiter abgekühlt und von neuem verwendet, oder es wird unmittelbar abgeleitet.

Fig. 9 und 10 zeigen diese Einrichtung. Das Wasser wird durch Hahn \(H \) und Rohr \(B \) in die Scheibe \(A \) geleitet, durch Rohr \(C \) aufgefangen und kann durch Rohr \(c \), nach Fig. 9, behufs fortlaufender Verwendung zum Behälter bezw. Kühlgefäßen \(F \) zurück oder, nach Fig. 10, unmittelbar abgeleitet werden.

Patent-Ansprüche:

1. Vorrichtung zur Kühlung der Kühlflüssigkeit für Kraftmaschinen und Kompressoren, dadurch gekennzeichnet, daß die Flüssigkeit in einen umlaufenden Behälter, der gleichzeitig als Schwungrad dienen kann,geführt wird, um an dessen Umfang angeschleudert, durch die Umdrehung bezw. durch Abschalen der heißen Luft- und Dampfschicht abgekühlt und infolge der übertragenen Energie durch eine Auffangvorrichtung am Umfange des Behälters durch ein Umlaufrohr an die zu kühlenden Stellen zurückgeleitet zu werden.

2. Eine Ausführungsform der unter 1. gekennzeichneten Vorrichtung, bei welcher das Fangrohr \(C \) mit einem schlauchförmigen Ausläufer \(i \), Fig. 6) versehen ist, zum Zweck, das Spritzen zu vermeiden.

3. Eine Ausführungsform der unter 1. gekennzeichneten Vorrichtung, bei welcher die unter 2. gedachte Scheibe als Brems scheibe eines Bremsdynamometers Verwendung findet, wo kaltes Wasser zur Kühlung der Brems scheibe eingleitet und wieder aufgefangen wird, um zu weiterer Verwendung in ein Kühlgefäss oder unmittelbar abgeleitet zu werden.

Hierzu 1 Blatt Zeichnungen.
MAYBACH IN CANNSTATT.

Kühlflüssigkeit für Kraftmaschinen und Kompressoren.

Fig. 7. Fig. 8.

Fig. 5. Fig. 10.

Zu der Patentschrift

№ 70260.